Developmental Plasticity and the Evolutionary Rescue of a Colonizing Mite.

Kathryn A Stewart, Isabel M Smallegange
Author Information
  1. Kathryn A Stewart: Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands. ORCID
  2. Isabel M Smallegange: School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK. ORCID

Abstract

Plasticity, especially in small newly founded populations, can expose genetic variation to selection during the evolutionary rescue of populations, allowing individuals to achieve a phenotype with which they can survive. However, developmental plasticity can also enable organisms to accommodate perturbations, generating new phenotypic variation. We explored whether, at the start of a colonization event, phenotype dynamics follow a "selective" process in which plasticity fuels evolutionary rescue or whether they are due to developmental plasticity in a "generative" process. We investigated this using the bulb mite Rhizoglyphus robini, which expresses a facultative, juvenile dispersal phenotype (deutonymph) under unfavorable conditions and shows alternative adult male phenotypes: competitive fighters or benign scramblers that are expressed to mitigate food stress and which have higher levels of genetic heterozygosity than fighters. Mimicking colonization dynamics, we founded small, medium and large populations from deutonymphs on low or high food to test if scramblers were expressed earliest postcolonization within (i) the smallest founder populations to alleviate inbreeding (selective hypothesis), or (ii) the largest founder populations as a direct consequence of food stress is highest due to higher food competition (generative hypothesis). In line with the generative hypothesis under both food environments, scramblers were expressed at the earliest in the largest founder populations, which also tended to show the lowest growth at the start of the experiment and had the lowest ultimate population size. Our findings highlight the necessity to seek explanations of how developmental pathways likely influence evolutionary rescue patterns, starting with how resource limitation (stress) shapes adaptive responses during colonization.

Keywords

References

  1. J Evol Biol. 2019 Feb;32(2):153-162 [PMID: 30422392]
  2. Mutat Res. 2005 Jan 6;569(1-2):3-11 [PMID: 15603749]
  3. Exp Appl Acarol. 2023 Aug;90(3-4):219-226 [PMID: 37498400]
  4. Trends Ecol Evol. 2022 Feb;37(2):129-137 [PMID: 34635340]
  5. Curr Opin Insect Sci. 2019 Dec;36:66-73 [PMID: 31499417]
  6. Evol Dev. 2020 Jan;22(1-2):47-55 [PMID: 31535438]
  7. Nat Ecol Evol. 2022 Sep;6(9):1330-1342 [PMID: 35851852]
  8. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120089 [PMID: 23209170]
  9. J Anim Ecol. 2019 Jan;88(1):11-23 [PMID: 30125360]
  10. Evol Dev. 2003 Jan-Feb;5(1):9-18 [PMID: 12492404]
  11. PLoS One. 2015 Sep 01;10(9):e0136872 [PMID: 26325395]
  12. Annu Rev Psychol. 2019 Jan 4;70:111-139 [PMID: 30125133]
  13. Biol Rev Camb Philos Soc. 2012 May;87(2):290-312 [PMID: 21929715]
  14. Ecology. 2018 Jul;99(7):1685-1687 [PMID: 29768654]
  15. J Exp Biol. 2024 Mar 7;227(Suppl_1): [PMID: 38449333]
  16. Hum Nat. 2009 Jun;20(2):204-68 [PMID: 25526958]
  17. Trends Ecol Evol. 2016 Jul;31(7):563-574 [PMID: 27067134]
  18. Evolution. 2020 Aug;74(8):1851-1855 [PMID: 32519389]
  19. Proc Biol Sci. 2015 Aug 7;282(1812):20151005 [PMID: 26203000]
  20. Naturwissenschaften. 2011 Apr;98(4):339-46 [PMID: 21387173]
  21. J Evol Biol. 2009 Jul;22(7):1435-46 [PMID: 19467134]
  22. Mol Ecol. 2015 May;24(9):2038-45 [PMID: 25558898]
  23. Ecology. 2011 Mar;92(3):755-64 [PMID: 21608483]
  24. BMC Evol Biol. 2019 Feb 18;19(1):58 [PMID: 30777004]
  25. Mol Biol Evol. 2021 Sep 27;38(10):4362-4375 [PMID: 34132791]
  26. Proc Biol Sci. 2015 Dec 22;282(1821):20152075 [PMID: 26674955]
  27. Evolution. 2023 Oct 3;77(10):2291-2300 [PMID: 37503764]
  28. Exp Appl Acarol. 2000 Feb;24(2):85-113 [PMID: 11108390]
  29. Biol Direct. 2021 Jan 9;16(1):3 [PMID: 33422150]
  30. Ecol Evol. 2022 Aug 01;12(8):e9145 [PMID: 35928796]

Grants

  1. /This work was funded by a VIDI grant no. 864.13.005 from the Dutch Research Council (NWO).

MeSH Term

Animals
Biological Evolution
Male
Mites
Phenotype
Genetic Variation

Word Cloud

Created with Highcharts 10.0.0populationsfoodcanevolutionaryrescuephenotypedevelopmentalplasticitycolonizationdynamicsscramblersexpressedstressfounderhypothesisPlasticitysmallfoundedgeneticvariationalsowhetherstartprocessduefightershigherearliestlargestgenerativelowestespeciallynewlyexposeselectionallowingindividualsachievesurviveHoweverenableorganismsaccommodateperturbationsgeneratingnewphenotypicexploredeventfollow"selective"fuels"generative"investigatedusingbulbmiteRhizoglyphusrobiniexpressesfacultativejuveniledispersaldeutonymphunfavorableconditionsshowsalternativeadultmalephenotypes:competitivebenignmitigatelevelsheterozygosityMimickingmediumlargedeutonymphslowhightestpostcolonizationwithinsmallestalleviateinbreedingselectiveiidirectconsequencehighestcompetitionlineenvironmentstendedshowgrowthexperimentultimatepopulationsizefindingshighlightnecessityseekexplanationspathwayslikelyinfluencepatternsstartingresourcelimitationshapesadaptiveresponsesDevelopmentalEvolutionaryRescueColonizingMiteeco‐evolutionaryphoresypolyphenism

Similar Articles

Cited By