Excess mortality in older adults and cumulative excess mortality across all ages during the COVID-19 pandemic in the 20 countries with the highest mortality rates worldwide.

Chiranjib Chakraborty, Manojit Bhattacharya, Sang-Soo Lee
Author Information
  1. Chiranjib Chakraborty: Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India.
  2. Manojit Bhattacharya: Department of Zoology, Fakir Mohan University, Balasore, India.
  3. Sang-Soo Lee: Institute for Skeletal Aging and Orthopedic Surgery, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea.

Abstract

BACKGROUND: Mortality statistics during the coronavirus disease 2019 (COVID-19) pandemic are crucial for the allocation of medical care resources and public health decision-making. This study was initiated to investigate the excess mortality among older adults during the pandemic. Our research focuses on 2 primary areas. First, we analyzed the cumulative excess mortality across all age groups to assess the global impact and specifically examined the top 20 countries with the highest mortality rates during the pandemic. Second, we explored excess deaths among older adults by categorizing data from the years 2020 and 2021 into age groups: 65-74, 75-84, and above 85.
METHODS: We analyzed data from the top 20 countries with the highest mortality rates globally, focusing on 3 components: all-cause mortality means, expected deaths mean, and excess deaths mean for both older men and women.
RESULTS: Although excess mortality is higher among older men and women across all 3 age groups (65-74, 75-84, and >85), the highest mean excess mortality was observed in women over the age of 85.
CONCLUSION: The results indicate that the severe acute respiratory syndrome coronavirus 2 virus had a disproportionately intense impact on older women. We developed 2 types of statistical models using the data: a binomial distribution model and a correlation coefficient model, both considering the mean excess deaths in older men and women across these 3 age groups. Estimating the excess mortality among older adults will aid in the formulation of healthcare policies for this demographic.

Keywords

References

  1. J Biol Dyn. 2020 Dec;14(1):621-632 [PMID: 32715932]
  2. Lancet. 2023 Feb 11;401(10375):431 [PMID: 36774149]
  3. PLoS One. 2024 Jan 31;19(1):e0295936 [PMID: 38295114]
  4. SSM Popul Health. 2022 Mar;17:101021 [PMID: 35018297]
  5. J Infect. 2020 Jun;80(6):e1-e13 [PMID: 32283156]
  6. Nonlinear Dyn. 2020;101(3):1921-1932 [PMID: 32904917]
  7. Cell Rep Med. 2022 Mar 11;3(4):100583 [PMID: 35480627]
  8. Lancet Healthy Longev. 2020 Nov;1(2):e80-e88 [PMID: 33521770]
  9. Epidemiol Serv Saude. 2021;30(2):e2020722 [PMID: 34008747]
  10. Prog Cardiovasc Dis. 2024 Jul-Aug;85:120-121 [PMID: 38519007]
  11. Epidemiol Infect. 2020 Dec 28;149:e1 [PMID: 33413705]
  12. Sci Rep. 2024 Apr 8;14(1):8240 [PMID: 38589527]
  13. Infect Dis Rep. 2023 Oct 08;15(5):600-634 [PMID: 37888139]
  14. Nature. 2023 Jan;613(7942):130-137 [PMID: 36517599]
  15. Clin Pract. 2021 Oct 21;11(4):778-784 [PMID: 34698149]
  16. mBio. 2021 Aug 31;12(4):e0114021 [PMID: 34465019]
  17. Vaccines (Basel). 2023 Mar 17;11(3): [PMID: 36992266]
  18. Proc Natl Acad Sci U S A. 2020 May 5;117(18):9696-9698 [PMID: 32300018]
  19. Eur J Epidemiol. 2021 Jun;36(6):581-588 [PMID: 34322831]
  20. J Epidemiol Community Health. 2021 Mar;75(3):213-223 [PMID: 33060194]
  21. Eur J Public Health. 2024 Jun 7;34(3):606-612 [PMID: 38390659]
  22. Infection. 2022 Apr;50(2):309-325 [PMID: 34914036]
  23. Am J Public Health. 2024 Jun;114(6):593-598 [PMID: 38547492]
  24. Lancet. 2023 Feb 11;401(10375):432 [PMID: 36774150]
  25. Contemp Clin Trials. 2020 Dec;99:106189 [PMID: 33132155]
  26. Western Pac Surveill Response J. 2022 May 25;13(2):1-7 [PMID: 36276174]
  27. Disaster Med Public Health Prep. 2024 Feb 19;18:e27 [PMID: 38372080]
  28. PLoS One. 2021 Jun 4;16(6):e0252454 [PMID: 34086762]
  29. J R Soc Med. 2020 Sep;113(9):329-334 [PMID: 32910871]
  30. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  31. Lancet Reg Health Eur. 2021 Mar 17;4:100072 [PMID: 34557812]
  32. Nonlinear Dyn. 2020;101(3):1981-1993 [PMID: 32836805]
  33. SN Comput Sci. 2023;4(4):403 [PMID: 37220559]
  34. Eur J Public Health. 2023 Oct 10;33(5):916-922 [PMID: 37263601]
  35. JAMA. 2023 May 16;329(19):1662-1670 [PMID: 37191702]
  36. Elder Law J. 2022;30:33-80 [PMID: 35936928]
  37. Int J Infect Dis. 2021 Mar;104:297-299 [PMID: 33352328]
  38. Smart Health (Amst). 2021 Apr;20:100178 [PMID: 33521226]
  39. Lancet. 2023 Feb 11;401(10375):432-433 [PMID: 36774151]
  40. Elife. 2021 Jun 30;10: [PMID: 34190045]
  41. Infect Dis Rep. 2024 Feb 20;16(2):142-153 [PMID: 38390950]
  42. J Infect Public Health. 2022 Jul;15(7):773-780 [PMID: 35728424]
  43. Lancet. 2022 Apr 16;399(10334):1513-1536 [PMID: 35279232]
  44. BMC Public Health. 2020 Nov 19;20(1):1742 [PMID: 33213391]

Word Cloud

Created with Highcharts 10.0.0mortalityexcessolderagewomenpandemicamongadultsacrosshighestdeathsmeanCOVID-192groups20countriesrates3mencoronavirushealthanalyzedcumulativeimpacttopdata65-7475-8485modelExcessBACKGROUND:Mortalitystatisticsdisease2019crucialallocationmedicalcareresourcespublicdecision-makingstudyinitiatedinvestigateresearchfocusesprimaryareasFirstassessglobalspecificallyexaminedSecondexploredcategorizingyears20202021groups:METHODS:globallyfocusingcomponents:all-causemeansexpectedRESULTS:Althoughhigher>85observedCONCLUSION:resultsindicatesevereacuterespiratorysyndromevirusdisproportionatelyintensedevelopedtypesstatisticalmodelsusingdata:binomialdistributioncorrelationcoefficientconsideringEstimatingwillaidformulationhealthcarepoliciesdemographicagesworldwideElderlyPandemicsPublic

Similar Articles

Cited By