Unveiling the Negative Synergistic Effect of Wall Shear Stress and Insulin on Endothelial NO Dynamics by Mathematical Modeling.

Yu-Yuan Zhang, Yong-Jiang Li, Xu-Qu Hu, Chun-Dong Xue, Shen Li, Zheng-Nan Gao, Kai-Rong Qin
Author Information
  1. Yu-Yuan Zhang: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China.
  2. Yong-Jiang Li: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China. yongjiangli@dlut.edu.cn.
  3. Xu-Qu Hu: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China.
  4. Chun-Dong Xue: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China.
  5. Shen Li: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China.
  6. Zheng-Nan Gao: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China.
  7. Kai-Rong Qin: Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, People's Republic of China. krqin@dlut.edu.cn. ORCID

Abstract

Diabetic vascular complications (DVCs) are diabetes-induced vascular dysfunction and pathologies, leading to the major causes of morbidity and mortality in millions of diabetic patients worldwide. DVCs are provoked by endothelial dysfunction which is closely coordinated with two important hallmarks: one is the insufficient insulin secretion or insulin resistance, and another is the decrease in intracellular nitric oxide (NO) influenced by dynamic wall shear stress (WSS). Although the intracellular NO dynamics in endothelial cells (ECs) is crucial for endothelial function, the regulation of NO production by dynamic WSS and insulin is still poorly understood. In this study, we have proposed a mathematical model of intracellular NO production in ECs under the stimulation of dynamic WSS combined with insulin. The model integrates simultaneously the biochemical signaling pathways of insulin and the mechanotransduction pathways induced by dynamic WSS. The accuracy and reliability of the model to quantitatively describe NO production in ECs were compared and validated with reported experimental data. According to the validated model, inhibition of protein kinase B (AKT) phosphorylation and Ca influx by dynamic oscillatory WSS disrupts the dual nature of endothelial nitric oxide synthase (eNOS) enzyme activation. This disruption leads to the decrease in NO production and the bimodal disappearance of NO waveforms. Moreover, the results reveal that dynamic WSS combined with insulin promote endothelial NO production through negative synergistic effects, which is resulted from the temporal differences in mechanical and biochemical signaling. In brief, the proposed model elucidates the mechanism of NO generation activated by dynamic WSS combined with insulin, providing a potential target and theoretical framework for future treatment of DVCs.

Keywords

References

  1. Ablooglu AJ, Kohanski RA (2001) Activation of the insulin receptor’s kinase domain changes the rate-determining step of substrate phosphorylation. Biochemistry 40:504–513. https://doi.org/10.1021/bi002292m [DOI: 10.1021/bi002292m]
  2. Andreeva VD, Ehlers H, RC AK, Presselt M, van den Broek JL, Bonnet S (2023) Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 6(1):179. https://doi.org/10.1038/s42004-023-00973-8 [DOI: 10.1038/s42004-023-00973-8]
  3. Andrews AM, Jaron D, Buerk DG et al (2010) Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide 23:335–342. https://doi.org/10.1016/j.niox.2010.08.003 [DOI: 10.1016/j.niox.2010.08.003]
  4. Babes EE, Bustea C, Behl T et al (2022) Acute coronary syndromes in diabetic patients, outcome, revascularization, and antithrombotic therapy. Biomed Pharmacother 148:112772. https://doi.org/10.1016/j.biopha.2022.112772 [DOI: 10.1016/j.biopha.2022.112772]
  5. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A (2023) Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 14:410. https://doi.org/10.1038/s41419-023-05935-5 [DOI: 10.1038/s41419-023-05935-5]
  6. Balligand J-L, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534. https://doi.org/10.1152/physrev.00042.2007 [DOI: 10.1152/physrev.00042.2007]
  7. Banday AA, Lokhandwala MF (2019) Oxidative stress impairs cGMP-dependent protein kinase activation and vasodilator-stimulated phosphoprotein serine-phosphorylation. Clin Exp Hypertens 41(1):5–13. https://doi.org/10.1080/10641963.2018.1433197 [DOI: 10.1080/10641963.2018.1433197]
  8. Beckman JA, Creager MA (2016) Vascular complications of diabetes. Circ Res 118:1771–1785. https://doi.org/10.1161/CIRCRESAHA.115.306884 [DOI: 10.1161/CIRCRESAHA.115.306884]
  9. Blitsman Y, Hollander E, Benafsha C et al (2024) The potential of PIP3 in enhancing wound healing. Int J Mol Sci 25:1780. https://doi.org/10.3390/ijms25031780 [DOI: 10.3390/ijms25031780]
  10. Bolli GB, Porcellati F, Lucidi P, Fanelli CG (2021) The physiological basis of insulin therapy in people with diabetes mellitus. Diabetes Res Clin Pract 175:108839. https://doi.org/10.1016/j.diabres.2021.108839 [DOI: 10.1016/j.diabres.2021.108839]
  11. Cetnar AD (2017) Intracellular Calcium Responses of Endothelial Cells Exposed to Pulsatile and Oscillatory Fluid Mechanical Shear Stresses. Undergraduate Honors Thesis, The Ohio State University
  12. Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci 103:15463–15468. https://doi.org/10.1073/pnas.0607224103 [DOI: 10.1073/pnas.0607224103]
  13. Cheng H, Zhong W, Wang L et al (2023) Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed Pharmacother 158:114198. https://doi.org/10.1016/j.biopha.2022.114198 [DOI: 10.1016/j.biopha.2022.114198]
  14. Clyne AM (2021) Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 49:313–325. https://doi.org/10.1042/BST20200611 [DOI: 10.1042/BST20200611]
  15. Comerford A, Plank MJ, David T (2008) Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J Biomech Eng 130:011010. https://doi.org/10.1115/1.2838026 [DOI: 10.1115/1.2838026]
  16. Condorelli P, George SC (2001) In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys J 80:2110–2119. https://doi.org/10.1016/S0006-3495(01)76184-X [DOI: 10.1016/S0006-3495(01)76184-X]
  17. Da Silva G, Da Silva M, Nascimento D et al (2021) Nitric oxide as a central molecule in hypertension: focus on the vasorelaxant activity of new nitric oxide donors. Biology 10:1041. https://doi.org/10.3390/biology10101041 [DOI: 10.3390/biology10101041]
  18. Dhar A, Venkadakrishnan J, Roy U et al (2023) A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 17:17539447231210170. https://doi.org/10.1177/17539447231210170 [DOI: 10.1177/17539447231210170]
  19. Dubsky M, Veleba J, Sojakova D et al (2023) Endothelial dysfunction in diabetes mellitus: new insights. Int J Mol Sci 24:10705. https://doi.org/10.3390/ijms241310705 [DOI: 10.3390/ijms241310705]
  20. Fadel AA, Barbee KA, Jaron D (2009) A Computational model of nitric oxide production and transport in a parallel plate flow chamber. Ann Biomed Eng 37:943–954. https://doi.org/10.1007/s10439-009-9658-5 [DOI: 10.1007/s10439-009-9658-5]
  21. Farah C, Michel LYM, Balligand J-L (2018) Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 15:292–316. https://doi.org/10.1038/nrcardio.2017.224 [DOI: 10.1038/nrcardio.2017.224]
  22. Florian JA, Kosky JR, Ainslie K et al (2003) Heparan Sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:e136. https://doi.org/10.1161/01.RES.0000101744.47866.D5 [DOI: 10.1161/01.RES.0000101744.47866.D5]
  23. Fu J, Yu MG, Li Q et al (2021) Insulin’s actions on vascular tissues: physiological effects and pathophysiological contributions to vascular complications of diabetes. Mol Metab 52:101236. https://doi.org/10.1016/j.molmet.2021.101236 [DOI: 10.1016/j.molmet.2021.101236]
  24. Gamper N, Shapiro MS (2007) Target-specific PIP2 signalling: How might it work? J Physiol 582:967–975. https://doi.org/10.1113/jphysiol.2007.132787 [DOI: 10.1113/jphysiol.2007.132787]
  25. Gao Y, Cui X, Wang M et al (2020) Oscillatory shear stress induces the transition of EPCs into mesenchymal cells through ROS/PKCζ/p53 pathway. Life Sci 253:117728. https://doi.org/10.1016/j.lfs.2020.117728 [DOI: 10.1016/j.lfs.2020.117728]
  26. Ha K-S (2024) Transglutaminase 2 in diabetes mellitus: unraveling its multifaceted role and therapeutic implications for vascular complications. Theranostics 14:2329–2344. https://doi.org/10.7150/thno.95742 [DOI: 10.7150/thno.95742]
  27. Haeusler RA, McGraw TE, Accili D (2018) Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19:31–44. https://doi.org/10.1038/nrm.2017.89 [DOI: 10.1038/nrm.2017.89]
  28. Hall C, Yu H, Choi E (2020) Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med 52:911–920. https://doi.org/10.1038/s12276-020-0456-3 [DOI: 10.1038/s12276-020-0456-3]
  29. He Y, Sun MM, Zhang GG et al (2021) Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 6:1–17. https://doi.org/10.1038/s41392-021-00828-5 [DOI: 10.1038/s41392-021-00828-5]
  30. He L, Zhang C-L, Chen Q et al (2022) Endothelial shear stress signal transduction and atherogenesis: from mechanisms to therapeutics. Pharmacol Ther 235:108152. https://doi.org/10.1016/j.pharmthera.2022.108152 [DOI: 10.1016/j.pharmthera.2022.108152]
  31. Hopkins BD, Goncalves MD, Cantley LC (2020) Insulin–PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol 16:276–283. https://doi.org/10.1038/s41574-020-0329-9 [DOI: 10.1038/s41574-020-0329-9]
  32. Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124:9–18. https://doi.org/10.1242/jcs.071001 [DOI: 10.1242/jcs.071001]
  33. Joshi S, Kar S, Kavdia M (2017) Computational analysis of interactions of oxidative stress and tetrahydrobiopterin reveals instability in eNOS coupling. Microvasc Res 114:114–128. https://doi.org/10.1016/j.mvr.2017.07.001 [DOI: 10.1016/j.mvr.2017.07.001]
  34. Kim J, Yunn N-O, Park M et al (2022) Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Nat Commun 13:6500. https://doi.org/10.1038/s41467-022-34292-8 [DOI: 10.1038/s41467-022-34292-8]
  35. Kirby PL, Buerk DG, Parikh J et al (2016) Mathematical model for shear stress dependent NO and adenine nucleotide production from endothelial cells. Nitric Oxide 52:1–15. https://doi.org/10.1016/j.niox.2015.10.004 [DOI: 10.1016/j.niox.2015.10.004]
  36. Knapp M, Tu X, Wu R (2019) Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin 40:1–8. https://doi.org/10.1038/s41401-018-0042-6 [DOI: 10.1038/s41401-018-0042-6]
  37. Koo A, Nordsletten D, Umeton R et al (2013) In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology. Biophys J 104:2295–2306. https://doi.org/10.1016/j.bpj.2013.03.052 [DOI: 10.1016/j.bpj.2013.03.052]
  38. Kundu R, Kumar S, Chandra A, Datta A (2024) Cell-permeable fluorescent sensors enable rapid live cell visualization of plasma membrane and nuclear PIP3 pools. JACS Au 4:1004–1017. https://doi.org/10.1021/jacsau.3c00738 [DOI: 10.1021/jacsau.3c00738]
  39. Kwan H-Y, Huang Y, Yao X (2000) Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J Biol Chem 275:6758–6763. https://doi.org/10.1074/jbc.275.10.6758 [DOI: 10.1074/jbc.275.10.6758]
  40. Kwan H, Huang Y, Yao X, Leung F (2009) Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 36:857–866. https://doi.org/10.1111/j.1440-1681.2009.05199.x [DOI: 10.1111/j.1440-1681.2009.05199.x]
  41. Lemon G, Gibson WG, Bennett MR (2003) Metabotropic receptor activation, desensitization and sequestration—I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation. J Theor Biol 223:93–111. https://doi.org/10.1016/S0022-5193(03)00079-1 [DOI: 10.1016/S0022-5193(03)00079-1]
  42. Li G, Barrett EJ, Barrett MO et al (2007) Tumor necrosis factor-α induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology 148:3356–3363. https://doi.org/10.1210/en.2006-1441 [DOI: 10.1210/en.2006-1441]
  43. Li L-F, Xiang C, Qin K-R (2015) Modeling of TRPV4-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP. Biomech Model Mechanobiol 14:979–993. https://doi.org/10.1007/s10237-015-0647-3 [DOI: 10.1007/s10237-015-0647-3]
  44. Li Y, Liu Y, Liu S et al (2023) Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 8:152. https://doi.org/10.1038/s41392-023-01400-z [DOI: 10.1038/s41392-023-01400-z]
  45. Li Q, Geng S, Luo H et al (2024) Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 9:1–48. https://doi.org/10.1038/s41392-024-01953-7 [DOI: 10.1038/s41392-024-01953-7]
  46. Liu H, Wang X, Gao H et al (2023) Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Front Endocrinol 14:1191426. https://doi.org/10.3389/fendo.2023.1191426 [DOI: 10.3389/fendo.2023.1191426]
  47. Lu S, He X, Yang Z et al (2021) Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 12:4721. https://doi.org/10.1038/s41467-021-25020-9 [DOI: 10.1038/s41467-021-25020-9]
  48. Maruhashi T, Higashi Y (2021) Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants 10:1306. https://doi.org/10.3390/antiox10081306 [DOI: 10.3390/antiox10081306]
  49. Mashour GA, Boock RJ (1999) Effects of shear stress on nitric oxide levels of human cerebral endothelial cells cultured in an artificial capillary system. Brain Res 842:233–238. https://doi.org/10.1016/S0006-8993(99)01872-7 [DOI: 10.1016/S0006-8993(99)01872-7]
  50. Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14:5–12. https://doi.org/10.1007/s11154-012-9229-1 [DOI: 10.1007/s11154-012-9229-1]
  51. Muniyappa R, Montagnani M, Koh KK, Quon MJ (2007) Cardiovascular actions of insulin. Endocr Rev 28:463–491. https://doi.org/10.1210/er.2007-0006 [DOI: 10.1210/er.2007-0006]
  52. Muniyappa R, Chen H, Montagnani M et al (2020) Endothelial dysfunction due to selective insulin resistance in vascular endothelium: insights from mechanistic modeling. Am J Physiol-Endocrinol Metab 319:E629–E646. https://doi.org/10.1152/ajpendo.00247.2020 [DOI: 10.1152/ajpendo.00247.2020]
  53. Panday S, Kar S, Kavdia M (2021) How does ascorbate improve endothelial dysfunction?—A computational analysis. Free Radic Biol Med 165:111–126. https://doi.org/10.1016/j.freeradbiomed.2021.01.031 [DOI: 10.1016/j.freeradbiomed.2021.01.031]
  54. Plank MJ, Wall DJN, David T (2006) Atherosclerosis and calcium signalling in endothelial cells. Prog Biophys Mol Biol 91:287–313. https://doi.org/10.1016/j.pbiomolbio.2005.07.005 [DOI: 10.1016/j.pbiomolbio.2005.07.005]
  55. Qin K-R, Xiang C, Cao L-L (2011) Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells. Biomech Model Mechanobiol 10:743–754. https://doi.org/10.1007/s10237-010-0270-2 [DOI: 10.1007/s10237-010-0270-2]
  56. Quon MJ, Campfield LA (1991) A mathematical model and computer simulation study of insulin receptor regulation. J Theor Biol 150:59–72. https://doi.org/10.1016/S0022-5193(05)80475-8 [DOI: 10.1016/S0022-5193(05)80475-8]
  57. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806. https://doi.org/10.1038/414799a [DOI: 10.1038/414799a]
  58. Sedaghat AR, Sherman A, Quon MJ (2002) A mathematical model of metabolic insulin signaling pathways. Am J Physiol-Endocrinol Metab 283:E1084–E1101. https://doi.org/10.1152/ajpendo.00571.2001 [DOI: 10.1152/ajpendo.00571.2001]
  59. Shamsaldeen YA, Ugur R, Benham CD, Lione LA (2018) Diabetic dyslipidaemia is associated with alterations in eNOS, caveolin-1, and endothelial dysfunction in streptozotocin treated rats. Diabetes Metab Res Rev 34:e2995. https://doi.org/10.1002/dmrr.2995 [DOI: 10.1002/dmrr.2995]
  60. Sriram K, Vázquez BYS, Yalcin O et al (2011) The effect of small changes in hematocrit on nitric oxide transport in arterioles. Antioxid Redox Signal 14:175–185. https://doi.org/10.1089/ars.2010.3266 [DOI: 10.1089/ars.2010.3266]
  61. Sriram K, Laughlin JG, Rangamani P, Tartakovsky DM (2016) Shear-induced nitric oxide production by endothelial cells. Biophys J 111:208–221. https://doi.org/10.1016/j.bpj.2016.05.034 [DOI: 10.1016/j.bpj.2016.05.034]
  62. Suomivuori C-M, Latorraca NR, Wingler LM et al (2020) Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. Science 367:881–887. https://doi.org/10.1126/science.aaz0326 [DOI: 10.1126/science.aaz0326]
  63. Tanishita K, Yamamoto K (eds) (2016) Vascular engineering. Springer, Japan, Tokyo
  64. Tsao PS, Lewis NP, Alpert S, Cooke JP (1995) Exposure to shear stress alters endothelial adhesiveness. Circulation 92:3513–3519. https://doi.org/10.1161/01.CIR.92.12.3513 [DOI: 10.1161/01.CIR.92.12.3513]
  65. Van Den Born JC, Hammes H-P, Greffrath W et al (2016) Gasotransmitters in vascular complications of diabetes. Diabetes 65:331–345. https://doi.org/10.2337/db15-1003 [DOI: 10.2337/db15-1003]
  66. Wanant S, Quon MJ (2000) Insulin receptor binding kinetics: modeling and simulation studies. J Theor Biol 205:355–364. https://doi.org/10.1006/jtbi.2000.2069 [DOI: 10.1006/jtbi.2000.2069]
  67. Wang Y-X, Liu H-B, Li P-S et al (2019a) ROS and NO dynamics in endothelial cells exposed to exercise-induced wall shear stress. Cell Mol Bioeng 12:107–120. https://doi.org/10.1007/s12195-018-00557-w [DOI: 10.1007/s12195-018-00557-w]
  68. Wang Z, Wang F, Kong X et al (2019b) Oscillatory shear stress induces oxidative stress via TLR4 activation in endothelial cells. Mediators Inflamm 2019:7162976. https://doi.org/10.1155/2019/7162976 [DOI: 10.1155/2019/7162976]
  69. Wang D, Li J, Luo G et al (2023) Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 64:102781. https://doi.org/10.1016/j.redox.2023.102781 [DOI: 10.1016/j.redox.2023.102781]
  70. Wiesner TF, Berk BC, Nerem RM (1997) A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress. Proc Natl Acad Sci U S A 94:3726–3731
  71. Wijayaratna D, Ratnayake K, Ubeysinghe S et al (2023) The spatial distribution of GPCR and Gβγ activity across a cell dictates PIP3 dynamics. Sci Rep 13:2771. https://doi.org/10.1038/s41598-023-29639-0 [DOI: 10.1038/s41598-023-29639-0]
  72. Wu C, You J, Fu J et al (2016) Phosphatidylinositol 3-Kinase/Akt mediates integrin signaling to control RNA polymerase I transcriptional activity. Mol Cell Biol 36:1555–1568. https://doi.org/10.1128/MCB.00004-16 [DOI: 10.1128/MCB.00004-16]
  73. Xue C, Chen K, Gao Z et al (2023) Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal CCS 21:298. https://doi.org/10.1186/s12964-022-01016-w [DOI: 10.1186/s12964-022-01016-w]
  74. Yang B, Rizzo V (2013) Shear stress activates eNOS at the endothelial apical surface through β1 containing integrins and caveolae. Cell Mol Bioeng 6:346–354. https://doi.org/10.1007/s12195-013-0276-9 [DOI: 10.1007/s12195-013-0276-9]
  75. Yang J, Clark JW, Bryan RM, Robertson CS (2005) Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am J Physiol-Heart Circ Physiol 289:H886–H897. https://doi.org/10.1152/ajpheart.00216.2004 [DOI: 10.1152/ajpheart.00216.2004]
  76. Yunn N-O, Kim J, Ryu SH, Cho Y (2023) A stepwise activation model for the insulin receptor. Exp Mol Med 55:2147–2161. https://doi.org/10.1038/s12276-023-01101-1 [DOI: 10.1038/s12276-023-01101-1]
  77. Zeng X, Xue C-D, Li Y-J, Qin K-R (2023) A mathematical model for intracellular NO and ROS dynamics in vascular endothelial cells activated by exercise-induced wall shear stress. Math Biosci 359:109009. https://doi.org/10.1016/j.mbs.2023.109009 [DOI: 10.1016/j.mbs.2023.109009]
  78. Zhang S, Tuk B, Van De Peppel J et al (2022) Microfluidic evidence of synergistic effects between mesenchymal stromal cell-derived biochemical factors and biomechanical forces to control endothelial cell function. Acta Biomater 151:346–359. https://doi.org/10.1016/j.actbio.2022.08.025 [DOI: 10.1016/j.actbio.2022.08.025]

Grants

  1. 12372304/National Natural Science Foundation of China

MeSH Term

Insulin
Nitric Oxide
Nitric Oxide Synthase Type III
Humans
Stress, Mechanical
Mathematical Concepts
Mechanotransduction, Cellular
Models, Cardiovascular
Endothelial Cells
Proto-Oncogene Proteins c-akt
Endothelium, Vascular
Computer Simulation
Phosphorylation
Animals

Chemicals

Insulin
Nitric Oxide
Nitric Oxide Synthase Type III
Proto-Oncogene Proteins c-akt

Word Cloud

Created with Highcharts 10.0.0NOWSSinsulindynamicendothelialproductionmodelDVCsintracellularoxideECscombinedvasculardysfunctiondecreasenitriccellsproposedbiochemicalsignalingpathwaysvalidatedsynergisticNegativeInsulinEndothelialDiabeticcomplicationsdiabetes-inducedpathologiesleadingmajorcausesmorbiditymortalitymillionsdiabeticpatientsworldwideprovokedcloselycoordinatedtwoimportanthallmarks:oneinsufficientsecretionresistanceanotherinfluencedwallshearstressAlthoughdynamicscrucialfunctionregulationstillpoorlyunderstoodstudymathematicalstimulationintegratessimultaneouslymechanotransductioninducedaccuracyreliabilityquantitativelydescribecomparedreportedexperimentaldataAccordinginhibitionproteinkinaseBAKTphosphorylationCainfluxoscillatorydisruptsdualnaturesynthaseeNOSenzymeactivationdisruptionleadsbimodaldisappearancewaveformsMoreoverresultsrevealpromotenegativeeffectsresultedtemporaldifferencesmechanicalbriefelucidatesmechanismgenerationactivatedprovidingpotentialtargettheoreticalframeworkfuturetreatmentUnveilingSynergisticEffectWallShearStressDynamicsMathematicalModelingDynamiceffectNitric

Similar Articles

Cited By

No available data.