Combined effects of Tai-Chi gait with mediolateral ground support perturbation on dynamic balance control.

Jacob Smith, Troilyn Jackson, Wei Liu, Jonathan Gelfond, Hao-Yuan Hsiao
Author Information
  1. Jacob Smith: University of Texas at Austin, Department of Kinesiology and Health Education, TX, USA.
  2. Troilyn Jackson: University of Texas at Austin, Department of Kinesiology and Health Education, TX, USA.
  3. Wei Liu: University of Texas Health Science Center at San Antonio, Department of Physical Therapy, TX, USA.
  4. Jonathan Gelfond: University of Texas Health Science Center at San Antonio, School of Medicine, TX, USA.
  5. Hao-Yuan Hsiao: University of Texas at Austin, Department of Kinesiology and Health Education, TX, USA.

Abstract

Tai-Chi (TC) is a broadly used exercise that appeared to decrease the risk of falls. However, biomechanical mechanisms underlying the reduced fall risks following TC exercise remain unclear and hinder the ability to optimize TC intervention to target specific balance deficit disorders. In addition, combining TC gait exercise with ground support perturbation may be a viable approach to further challenge balance control compared to TC gait alone. The purpose of this study was to compare dynamic stability and limb support force production during comfortable walking speed (CWS), TC gait, and TC gait with medial (MED) and lateral (LAT) ground support perturbations in older and younger adults. Ten older adults and ten younger adults performed CWS, TC gait, LAT, and MED. Conditions involving TC gait showed decreased margin of stability (MoS) (main effect of condition,  ​< ​0.01) and increased vertical force impulse compared to CWS ( ​< ​0.01). Medial ground support perturbation induced the smallest MoS among all conditions. Older adults showed increased MoS compared to younger adults ( ​< ​0.01). These findings provided insight into how key balance control characteristics are modulated during TC exercise and indicate that combining ground support perturbation with TC may further challenge dynamic stability.

Keywords

References

  1. J Biomech. 2012 Apr 5;45(6):1053-9 [PMID: 22326059]
  2. Med Sci Sports Exerc. 1999 May;31(5):634-8 [PMID: 10331880]
  3. J R Soc Interface. 2013 Mar 20;10(83):20120999 [PMID: 23516062]
  4. J Gerontol A Biol Sci Med Sci. 2000 Mar;55(3):M147-54 [PMID: 10795727]
  5. J Safety Res. 2008;39(3):345-9 [PMID: 18571577]
  6. J Biomech. 2005 Jan;38(1):1-8 [PMID: 15519333]
  7. JAMA Netw Open. 2019 Feb 1;2(2):e188280 [PMID: 30768195]
  8. Gait Posture. 2010 Jan;31(1):131-5 [PMID: 19939681]
  9. Curr Hypertens Rep. 2020 Mar 2;22(3):25 [PMID: 32124064]
  10. BMJ Open. 2017 Feb 6;7(2):e013661 [PMID: 28167744]
  11. Phys Ther. 1997 Jun;77(6):646-60 [PMID: 9184689]
  12. Phys Ther. 2015 May;95(5):700-9 [PMID: 25524873]
  13. Gait Posture. 2024 Jan;107:162-168 [PMID: 37827929]
  14. Res Gerontol Nurs. 2021 May-Jun;14(3):126-137 [PMID: 34039148]
  15. J Gerontol A Biol Sci Med Sci. 2021 Aug 13;76(9):e194-e202 [PMID: 33491052]
  16. J Am Geriatr Soc. 1996 May;44(5):489-97 [PMID: 8617895]
  17. J Gerontol A Biol Sci Med Sci. 2019 Aug 16;74(9):1497-1503 [PMID: 30668636]
  18. Age Ageing. 2007 May;36(3):262-8 [PMID: 17356003]
  19. Ann Phys Rehabil Med. 2020 Nov;63(6):505-517 [PMID: 31981834]
  20. J Am Geriatr Soc. 2016 Mar;64(3):518-25 [PMID: 26865039]
  21. Appl Bionics Biomech. 2019 Jun 02;2019:1046459 [PMID: 31281413]
  22. Int J MS Care. 2018 Jul-Aug;20(4):164-172 [PMID: 30150900]
  23. J Neuroeng Rehabil. 2020 Jun 17;17(1):79 [PMID: 32552850]
  24. Appl Nurs Res. 2012 Feb;25(1):54-9 [PMID: 20974089]
  25. J Electromyogr Kinesiol. 2004 Jun;14(3):343-54 [PMID: 15094148]
  26. J Phys Ther Sci. 2015 Jun;27(6):1833-8 [PMID: 26180331]
  27. BMC Musculoskelet Disord. 2021 Jun 28;22(1):597 [PMID: 34182955]
  28. J Geriatr Phys Ther. 2014 Jul-Sep;37(3):127-35 [PMID: 24406709]
  29. Prev Med. 2010 Sep-Oct;51(3-4):222-7 [PMID: 20558197]
  30. Disabil Rehabil. 2013 Aug;35(17):1429-35 [PMID: 23167499]
  31. Front Aging Neurosci. 2018 Sep 24;10:280 [PMID: 30319391]
  32. Front Bioeng Biotechnol. 2020 Sep 21;8:578030 [PMID: 33072728]
  33. Phys Ther. 2016 Mar;96(3):338-47 [PMID: 26206220]
  34. BMC Geriatr. 2019 Aug 27;19(1):235 [PMID: 31455225]
  35. Sci Rep. 2017 Dec 19;7(1):17875 [PMID: 29259237]
  36. Arch Phys Med Rehabil. 2010 Jun;91(6):849-56 [PMID: 20510973]
  37. Gait Posture. 2012 Jul;36(3):490-4 [PMID: 22682787]
  38. J Gerontol. 1989 Jul;44(4):M112-7 [PMID: 2738307]
  39. J Am Geriatr Soc. 1994 May;42(5):506-12 [PMID: 8176145]
  40. Clin Biomech (Bristol). 2010 Dec;25(10):984-8 [PMID: 20696509]
  41. J Biomech. 2006;39(12):2194-204 [PMID: 16125182]
  42. Arch Phys Med Rehabil. 2002 Oct;83(10):1364-9 [PMID: 12370869]
  43. Gait Posture. 2003 Aug;18(1):47-59 [PMID: 12855300]
  44. Geriatr Gerontol Int. 2017 Dec;17(12):2294-2303 [PMID: 28621015]
  45. J Biomech Eng. 1998 Feb;120(1):133-9 [PMID: 9675692]
  46. Eur J Sport Sci. 2019 Jul;19(6):774-783 [PMID: 30394188]
  47. J Biomech. 2020 May 22;105:109769 [PMID: 32278527]
  48. Exerc Sport Sci Rev. 2003 Oct;31(4):182-7 [PMID: 14571957]

Grants

  1. UM1 TR004538/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0TCgaitsupportgroundadultsexercisebalanceperturbationstabilityTai-ChicontrolcompareddynamicCWSyoungerMoS​< ​001combiningmaychallengeforceMEDLAToldershowedincreasedbroadlyusedappeareddecreaseriskfallsHoweverbiomechanicalmechanismsunderlyingreducedfallrisksfollowingremainunclearhinderabilityoptimizeinterventiontargetspecificdeficitdisordersadditionviableapproachalonepurposestudycomparelimbproductioncomfortablewalkingspeedmediallateralperturbationsTentenperformedConditionsinvolvingdecreasedmarginmaineffectconditionverticalimpulseMedialinducedsmallestamongconditionsOlderfindingsprovidedinsightkeycharacteristicsmodulatedindicateCombinedeffectsmediolateralAgingBalanceDynamicGaitPerturbation

Similar Articles

Cited By