Effects of high-intensity intermittent cross-training on maximal oxygen uptake.

Xin Liu, Katsunori Tsuji, Yuzhong Xu, Motoyuki Iemitsu, Izumi Tabata
Author Information
  1. Xin Liu: Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
  2. Katsunori Tsuji: Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
  3. Yuzhong Xu: Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
  4. Motoyuki Iemitsu: Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
  5. Izumi Tabata: Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.

Abstract

We investigated the effects of high-intensity intermittent cross-training (HIICT) on maximal oxygen uptake ( Omax). The HIICT consisted of alternating intermittent 20-s treadmill running (1, 3, 5, and 7 bouts) and 20-s bicycle exercise (2, 4, and 6 bouts) with a 10-s rest period. Each intensity for running and bicycling of the HIICT corresponded to an oxygen demand of ���160% and ���170% of the Omax, respectively. Fifteen healthy young males (aged [24 ����� ���1] yrs) were randomly assigned to training (TG,  ���= ���8) and non-training control (CG,  ���= ���7) groups. The TG completed this HIICT daily 4 days/week for 6 weeks. Significant group ����� ���time interactions were observed for both the running and bicycling Omax ( ���< ���0.001 each). After the training, the Omax for both running ([57.4 ����� ���4.8] mL��kg��min) and bicycling ([50.6 ����� ���3.7] mL��kg��min) in the TG were significantly higher than those for running ([50.1 ����� ���3.1] mL��kg��min) and bicycling ([43.7 ����� ���3.6] mL��kg��min) in the CG, respectively ( ���< ���0.01 each). Post-hoc tests revealed a significant increase in Omax for running and bicycling in the TG after the HIICT ( ���< ���0.001 each) but no significant difference in the CG. These results demonstrated that the newly developed HIICT increases the Omax for both running and bicycling.

Keywords

References

  1. J Appl Physiol. 1955 Jul;8(1):73-80 [PMID: 13242493]
  2. Med Sci Sports Exerc. 2007 Apr;39(4):665-71 [PMID: 17414804]
  3. J Physiol Sci. 2019 Jul;69(4):559-572 [PMID: 31004287]
  4. Med Sci Sports Exerc. 1993 Dec;25(12):1393-7 [PMID: 8107548]
  5. Biology (Basel). 2020 Aug 24;9(9): [PMID: 32847134]
  6. Scand J Rehabil Med. 1970;2(2):92-8 [PMID: 5523831]
  7. Med Sci Sports Exerc. 1996 Oct;28(10):1327-30 [PMID: 8897392]
  8. J Appl Physiol. 1974 Jun;36(6):753-6 [PMID: 4829917]
  9. J Appl Physiol. 1975 Jan;38(1):151-5 [PMID: 1110232]
  10. Med Sci Sports Exerc. 2004 Jun;36(6):991-1000 [PMID: 15179169]
  11. PLoS One. 2015 Mar 10;10(3):e0119432 [PMID: 25756359]
  12. Exp Physiol. 2021 Dec;106(12):2299-2303 [PMID: 32058638]
  13. J Appl Physiol (1985). 1988 Jan;64(1):50-60 [PMID: 3356666]
  14. Med Sci Sports Exerc. 1997 Mar;29(3):390-5 [PMID: 9139179]
  15. Sports Med Health Sci. 2024 Jan 13;6(1):63-69 [PMID: 38463671]
  16. J Sci Med Sport. 2019 Aug;22(8):941-947 [PMID: 30733142]
  17. J Appl Physiol (1985). 1992 Jun;72(6):2458-62 [PMID: 1385806]
  18. Sports Med Health Sci. 2020 Jun;2(2):55-64 [PMID: 34189484]

Word Cloud

Created with Highcharts 10.0.0runningHIICTOmaxbicyclingoxygenTGmL��kg��minintermittentuptakeCG���< ���0high-intensitycross-trainingmaximal20-sbouts46intensityrespectivelytraining001[50significantinvestigatedeffectsconsistedalternatingtreadmill1357bicycleexercise210-srestperiodcorrespondeddemand���160%���170%Fifteenhealthyyoungmalesaged[24 ����� ���1]yrsrandomlyassigned ���= ���8non-trainingcontrol ���= ���7groupscompleteddailydays/weekweeksSignificantgroup ����� ���timeinteractionsobserved[574 ����� ���48]6 ����� ���37]significantlyhigher1 ����� ���31][437 ����� ���36]01Post-hoctestsrevealedincreasedifferenceresultsdemonstratednewlydevelopedincreasesEffectsBicyclingCross-trainingHighMaximalRunning

Similar Articles

Cited By

No available data.