Future risk of falls induced by ankle-foot sprains history: An observational and mendelian randomization study.

Xiao'ao Xue, Weichu Tao, Qianru Li, Yi Li, Yiran Wang, Le Yu, Xicheng Gu, Tian Xia, Rong Lu, Ru Wang, He Wang, Yinghui Hua
Author Information
  1. Xiao'ao Xue: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
  2. Weichu Tao: School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
  3. Qianru Li: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
  4. Yi Li: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
  5. Yiran Wang: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
  6. Le Yu: School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
  7. Xicheng Gu: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
  8. Tian Xia: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
  9. Rong Lu: Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
  10. Ru Wang: School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
  11. He Wang: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
  12. Yinghui Hua: Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Abstract

Background: ankle-foot sprains are the most common musculoskeletal injuries, which can impair balance and theoretically increase the risk of falls, but still, there is a lack of evidence supporting the direct association between ankle-foot sprains and the future risk of falls.
Methods: UK Biobank cohort was utilized to measure the association between ankle-foot sprains and fall risk with covariates adjusted. Then, the two-sample Mendelian randomization (MR) analysis was applied based on the genetically predicated ankle-foot sprains from FinnGen to validate causal relationship. Finally, genetically predicated cerebellar neuroimaging features were used to explore the mediating role of maladaptive neuroplasticity between ankle-foot sprains and falls by two-step MR analyses.
Results: Patients with ankle-foot sprains history exhibited a slightly increased risk of falls than the matched controls before and after adjustment for covariates (odd ratio [] ranged from 1.632 to 1.658). Two-sample MR analysis showed that ankle-foot sprains led to a higher risk of falls ( ���= ���1.036) and a lower fractional anisotropy of superior cerebellar peduncle (SCP) (left,  ���= ���-0.052; right,  ���= ���-0.053). A trend of mediating effect was observed for the fractional anisotropy of right SCP in the causal effects of ankle-foot sprains on falls ( ���= ���0.003).
Conclusion: The history of ankle-foot sprains is associated with a slightly increased risk of falls. These findings improve our understanding of the clinical consequences of ankle-foot sprains in terms of fall risk and suggest the importance of adopting more efficient strategies for managing residual functional deficits after the injuries.

Keywords

References

  1. Gait Posture. 2018 Feb;60:88-92 [PMID: 29169097]
  2. J Sci Med Sport. 2019 Sep;22(9):976-980 [PMID: 31122877]
  3. Genet Epidemiol. 2016 Nov;40(7):597-608 [PMID: 27625185]
  4. Med Sci Sports Exerc. 2019 Apr;51(4):640-646 [PMID: 30480617]
  5. Annu Rev Neurosci. 2010;33:89-108 [PMID: 20367317]
  6. Commun Biol. 2020 Sep 30;3(1):543 [PMID: 32999390]
  7. Sports Health. 2024 Jan-Feb;16(1):38-46 [PMID: 38112261]
  8. Magn Reson Med. 2009 May;61(5):1255-60 [PMID: 19253405]
  9. Genet Epidemiol. 2013 Nov;37(7):658-65 [PMID: 24114802]
  10. Gait Posture. 2015 Jan;41(1):7-12 [PMID: 25278464]
  11. Genet Epidemiol. 2016 May;40(4):304-14 [PMID: 27061298]
  12. J Gerontol A Biol Sci Med Sci. 2006 Aug;61(8):866-70 [PMID: 16912106]
  13. Sports Med. 2018 Jan;48(1):189-205 [PMID: 28887759]
  14. Eur J Epidemiol. 2021 May;36(5):465-478 [PMID: 33961203]
  15. Arch Gerontol Geriatr. 2023 May;108:104940 [PMID: 36709562]
  16. J Geriatr Phys Ther. 2023 Apr-Jun 01;46(2):110-115 [PMID: 34380981]
  17. Eur J Epidemiol. 2017 May;32(5):377-389 [PMID: 28527048]
  18. Osteoporos Int. 2019 Oct;30(10):2099-2117 [PMID: 31201482]
  19. Clin Sports Med. 1988 Jan;7(1):29-36 [PMID: 2900695]
  20. Physiol Rev. 2012 Oct;92(4):1651-97 [PMID: 23073629]
  21. Arch Phys Med Rehabil. 2006 Sep;87(9):1235-41 [PMID: 16935061]
  22. PLoS Med. 2007 Oct 16;4(10):e296 [PMID: 17941714]
  23. BMJ. 2011 Jun 16;342:d3411 [PMID: 21680622]
  24. Elife. 2018 May 30;7: [PMID: 29846171]
  25. Br J Sports Med. 2014 Jul;48(13):1014-8 [PMID: 24255768]
  26. Br J Sports Med. 2021 May;55(9):463-464 [PMID: 33106250]
  27. JAMA. 2021 Oct 26;326(16):1614-1621 [PMID: 34698778]
  28. JAMA. 2010 Jan 20;303(3):273-4 [PMID: 20085958]
  29. Br J Sports Med. 2017 Jan;51(2):105-112 [PMID: 27806951]
  30. Front Physiol. 2022 Sep 16;13:965702 [PMID: 36187771]
  31. J Neurosci. 2006 Sep 6;26(36):9107-16 [PMID: 16957067]
  32. J Sport Health Sci. 2021 Mar;10(2):182-191 [PMID: 33017672]
  33. Am J Sports Med. 2023 Jan;51(1):169-178 [PMID: 36592020]
  34. Brain Stimul. 2018 Nov - Dec;11(6):1239-1250 [PMID: 30017699]
  35. Int J Epidemiol. 2011 Jun;40(3):755-64 [PMID: 21414999]
  36. Int J Epidemiol. 2015 Apr;44(2):512-25 [PMID: 26050253]
  37. Nat Genet. 2018 May;50(5):693-698 [PMID: 29686387]
  38. Med Sci Sports Exerc. 2020 Feb;52(2):335-344 [PMID: 31453883]
  39. J Athl Train. 2019 Jun;54(6):572-588 [PMID: 31162943]
  40. PM R. 2021 Aug;13(8):901-914 [PMID: 32902164]
  41. Med Sci Sports Exerc. 2023 Jun 1;55(6):1114-1120 [PMID: 36791018]
  42. Sports Health. 2024 Jan-Feb;16(1):29-37 [PMID: 36872589]
  43. Clin Orthop Relat Res. 2024 May 1;482(5):814-826 [PMID: 37938129]
  44. BMJ. 2020 Mar 18;368:m441 [PMID: 32188600]
  45. Neuroimage. 2022 Sep;258:119385 [PMID: 35714886]
  46. J Sport Health Sci. 2021 Sep;10(5):523-529 [PMID: 33188966]
  47. Maturitas. 2018 Dec;118:7-14 [PMID: 30415759]
  48. Sports Med. 2017 Jul;47(7):1271-1288 [PMID: 28005191]
  49. J Sport Rehabil. 2023 Jan 17;32(2):115-116 [PMID: 36649726]
  50. Bioinformatics. 2016 Oct 15;32(20):3207-3209 [PMID: 27318201]
  51. J Athl Train. 2019 Jun;54(6):603-610 [PMID: 31135209]
  52. Nat Neurosci. 2021 May;24(5):737-745 [PMID: 33875891]
  53. Handb Clin Neurol. 2018;159:3-26 [PMID: 30482322]
  54. Br J Sports Med. 2021 Nov;55(22):1270-1276 [PMID: 34158354]
  55. Exp Brain Res. 2009 Jul;196(4):537-44 [PMID: 19506843]
  56. J Bone Joint Surg Br. 1965 Nov;47(4):678-85 [PMID: 5846767]
  57. Am J Med. 2021 Jan;134(1):30-35 [PMID: 32805226]
  58. Age Ageing. 1987 May;16(3):189-93 [PMID: 3604799]
  59. PM R. 2023 Jun;15(6):780-789 [PMID: 35532066]
  60. Man Ther. 2015 Jun;20(3):368-77 [PMID: 25703454]
  61. Lancet. 2012 Mar 31;379(9822):1173-4 [PMID: 22463865]
  62. Lancet. 2020 Oct 17;396(10258):1204-1222 [PMID: 33069326]

Word Cloud

Created with Highcharts 10.0.0sprainsankle-footfallsriskinjuriesrandomizationMRanalysisbalanceassociationUKfallcovariatesMendeliangeneticallypredicatedFinnGencausalcerebellarmediatinghistoryslightlyincreased1fractionalanisotropySCP ���= ���-0rightBackground:Ankle-footcommonmusculoskeletalcanimpairtheoreticallyincreasestilllackevidencesupportingdirectfutureMethods:Biobankcohortutilizedmeasureadjustedtwo-sampleappliedbasedvalidaterelationshipFinallyneuroimagingfeaturesusedexplorerolemaladaptiveneuroplasticitytwo-stepanalysesResults:Patientsexhibitedmatchedcontrolsadjustmentoddratio[]ranged632658Two-sampleshowedledhigher ���= ���1036lowersuperiorpeduncleleft052053trendeffectobservedeffects ���= ���0003Conclusion:associatedfindingsimproveunderstandingclinicalconsequencestermssuggestimportanceadoptingefficientstrategiesmanagingresidualfunctionaldeficitsFutureinducedhistory:observationalmendelianstudyAccidentalLegPosturalbiobank

Similar Articles

Cited By (1)