EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model.

Dilmini Warnakulasooriya, Vladimir E Bondarenko
Author Information
  1. Dilmini Warnakulasooriya: Department of Mathematics and Statistics, Georgia State University, 25 Park Place, Room 1346, Atlanta, GA, 30303-3083, USA.
  2. Vladimir E Bondarenko: Department of Mathematics and Statistics, Georgia State University, 25 Park Place, Room 1346, Atlanta, GA, 30303-3083, USA. vbondarenko@gsu.edu. ORCID

Abstract

Transverse aortic constriction (TAC) is one of the experimental mouse models that are designed to investigate cardiac hypertrophy and heart failure. Most of the studies with this model are devoted to the stage of developed heart failure. However, several studies of the early stages (hypertrophy after 1 week of TAC) of this disease found significant changes in the ��-adrenergic system, electrical activity, and Ca dynamics in mouse ventricular myocytes. To provide a quantitative description of cardiac hypertrophy, we developed a new compartmentalized mathematical model of hypertrophic mouse ventricular myocytes for the early stage after the TAC procedure. The model described the changes in cell geometry, action potentials, [Ca] transients, and ��- and ��-adrenergic signaling systems. We also showed that the hypertrophic myocytes demonstrated early afterdepolarizations (EADs) upon stimulation with isoproterenol at relatively long stimulation periods. Simulation of the hypertrophic myocyte activities revealed that the synergistic effects of the late Na current, the L-type Ca current, and the T-type Ca current were responsible for the initiation of EADs. The mechanisms of EAD and its suppression were investigated and sensitivity analysis was performed. Simulation results obtained with the hypertrophic cell model were compared to those from the normal ventricular myocytes. The developed mathematical model can be used for the explanation of the existing experimental data, for the development of the models for other hypertrophic phenotypes, and to make experimentally testable predictions of a hypertrophic myocyte's behavior.

Keywords

References

  1. Ahmmed GU, Dong PH, Song G, Ball NA, Xu Y, Walsh RA, Chiamvimonvat N (2000) Changes in Ca2+ cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure. Circ Res 86:558���570
  2. Asfaw TN, Tyan L, Glukhov AV, Bondarenko VE (2020) A compartmentalized mathematical model of mouse atrial myocytes. Am J Physiol Heart Circ Physiol 318:H485���H507. https://doi.org/10.1152/ajpheart.00460.2019 [DOI: 10.1152/ajpheart.00460.2019]
  3. Asfaw TN, Bondarenko VE (2023) A compartmentalized mathematical model of the ��1-and ��2-adrenergic signaling systems in ventricular myocytes from mouse in heart failure. Am J Physiol Cell Physiol 324:C263���C291
  4. Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37:290���299
  5. Berry JM, Naseem RH, Rothermel BA, Hill JA (2007) Models of cardiac hypertrophy and transition to heart failure. Drug Discov Today Dis Model 4:197���206
  6. Bing O, Brooks WW, Conrad CH, Sen S, Perreault CL, Morgan JP (1991) Intracellular calcium transients in myocardium from spontaneously hypertensive rats during the transition to heart failure. Circ Res 68:1390���1400
  7. Bondarenko VE (2014) A compartmentalized mathematical model of the ��1-adrenergic signaling system in mouse ventricular myocytes. PLoS ONE 9:e89113
  8. Bryant SM, Kong CH, Watson JJ, Gadeberg HC, James AF, Cannell MB, Orchard CH (2018) Caveolin 3-dependent loss of t-tubular ICa during hypertrophy and heart failure in mice. Exp Physiol 103:652���665
  9. Chiang C-S, Huang C-H, Chieng H, Chang Y-T, Chang D, Chen J-J, Chen Y-C, Chen Y-H, Shin H-S, Campbell KP (2009) The CaV3. 2 T-type Ca2+ channel is required for pressure overload���induced cardiac hypertrophy in mice. Circ Res 104:522���530
  10. Choi D-J, Koch WJ, Hunter JJ, Rockman HA (1997) Mechanism of ��-adrenergic receptor desensitization in cardiac hypertrophy is increased ��-adrenergic receptor kinase. J Biol Chem 272:17223���17229
  11. Clancy CE, Tateyama M, Liu H, Wehrens XH, Kass RS (2003) Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation 107:2233���2237
  12. Cooling M, Hunter P, Crampin EJ (2007) Modeling hypertrophic IP3 transients in the cardiac myocyte. Biophys J 93:3421���3433
  13. Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G (2006) Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296:1593���1601
  14. Correll RN, Eder P, Burr AR, Despa S, Davis J, Bers DM, Molkentin JD (2014) Overexpression of the Na/K ATPase ��2 but not ��1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circ Res 114:249���256. https://doi.org/10.1161/CIRCRESAHA.114.302293 [DOI: 10.1161/CIRCRESAHA.114.302293]
  15. Edwards AG, Grandi E, Hake JE, Patel S, Li P, Miyamoto S, Omens JH, Heller Brown J, Bers DM, McCulloch AD (2014) Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle. Circulat Arrhythm Electrophysiol 7:1205���1213.
  16. Eisner DA, Caldwell JL, Trafford AW, Hutchings DC (2020) The control of diastolic calcium in the heart: basic mechanisms and functional implications. Circ Res 126:395���412
  17. Estrada AC, Yoshida K, Saucerman JJ, Holmes JW (2021) A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech Model Mechanobiol 20:293���307
  18. Fedida D, Orth PM, Hesketh JC, Ezrin AM (2006) The role of late INa and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol 17:S71���S78
  19. Flaim SN, Giles WR, McCulloch AD (2006) Contributions of sustained INa and IKv43 to transmural heterogeneity of early repolarization and arrhythmogenesis in canine left ventricular myocytes. Am J Physiol Heart Circulat Physiol 291:H2617���H2629
  20. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580���1589
  21. Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL (2020) Calcium signaling in cardiomyocyte function. Cold Spring Harb Perspect Biol 12:a035428
  22. Hoang-Trong MT, Ullah A, Lederer WJ, Jafri MS (2021) Cardiac alternans occurs through the synergy of voltage-and calcium-dependent mechanisms. Membranes 11:794
  23. Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276���1283
  24. Iancu RV, Jones SW, Harvey RD (2007) Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 92:3317���3331. https://doi.org/10.1529/biophysj.106.095356 [DOI: 10.1529/biophysj.106.095356]
  25. Ito K, Yan X, Tajima M, Su Z, Barry WH, Lorell BH (2000) Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts. Circ Res 87:588���595. https://doi.org/10.1161/01.res.87.7.588 [DOI: 10.1161/01.res.87.7.588]
  26. Jaleel N, Nakayama H, Chen X, Kubo H, MacDonnell S, Zhang H, Berretta R, Robbins J, Cribbs L, Molkentin JD (2008) Ca2+ influx through T-and L-type Ca2+ channels have different effects on myocyte contractility and induce unique cardiac phenotypes. Circ Res 103:1109���1119
  27. January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 64:977���990
  28. Jin Y-F, Han H-C, Berger J, Dai Q, Lindsey ML (2011) Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling. BMC Syst Biol 5:1���14
  29. Kim JH, Jiang Y-P, Cohen IS, Lin RZ, Mathias RT (2017) Pressure-overload-induced angiotensin-mediated early remodeling in mouse heart. PLoS ONE 12:e0176713
  30. Knollmann BC, Schober T, Petersen AO, Sirenko SG, Franz MR (2007) Action potential characterization in intact mouse heart: steady-state cycle length dependence and electrical restitution. Am J Physiol Heart Circulat Physiol 292:H614���H621
  31. Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobiol 8:301���309
  32. LaRocca TJ, Seeger T, Prado M, Perea-Gil I, Neofytou E, Mecham BH, Ameen M, Chang ACY, Pandey G, Wu JC, Karakikes I (2020) Pharmacological silencing of MicroRNA-152 prevents pressure overload-induced heart failure. Circ Heart Fail 13:e006298. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006298 [DOI: 10.1161/CIRCHEARTFAILURE.119.006298]
  33. Lee L, Kassab G, Guccione J (2016) Mathematical modeling of cardiac growth and remodeling. Wiley Interdiscip Rev Syst Biol Med 8:211���226
  34. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561���1566
  35. Ljubojevic-Holzer S, Herren AW, Djalinac N, Voglhuber J, Morotti S, Holzer M, Wood BM, Abdellatif M, Matzer I, Sacherer M (2020) CaMKII��C drives early adaptive Ca2+ change and late eccentric cardiac hypertrophy. Circ Res 127:1159���1178
  36. Ljubojevic S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, Winkler C, Pritz E, Mittler T, Schmidt A (2014) Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation 130:244���255
  37. Locatelli J, De Assis LV, Isoldi MC (2014) Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 19:207���225
  38. Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102:470���479
  39. Marionneau C, Brunet S, Flagg TP, Pilgram TK, Demolombe S, Nerbonne JM (2008) Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy. Circ Res 102:1406���1415
  40. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106:166���175
  41. Mohamed BA, Asif AR, Schnelle M, Qasim M, Khadjeh S, Lbik D, Schott P, Hasenfuss G, Toischer K (2016) Proteomic analysis of short-term preload-induced eccentric cardiac hypertrophy. J Transl Med 14:1���12
  42. Mohamed BA, Hartmann N, Tirilomis P, Sekeres K, Li W, Neef S, Richter C, Zeisberg EM, Kattner L, Didie M, Guan K, Schmitto JD, Lehnart SE, Luther S, Voigt N, Seidler T, Sossalla S, Hasenfuss G, Toischer K (2018) Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aan0724
  43. Ohkusa T, Hisamatsu Y, Yano M, Kobayashi S, Tatsuno H, Saiki Y, Kohno M, Matsuzaki M (1997) Altered cardiac mechanism and sarcoplasmic reticulum function in pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol 29:45���54
  44. Oldfield CJ, Duhamel TA, Dhalla NS (2020) Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 98:74���84
  45. Petkova-Kirova PS, London B, Salama G, Rasmusson RL, Bondarenko VE (2012) Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-��. Am J Physiol Heart Circulat Physiol 302:H934���H952
  46. Pezhouman A, Madahian S, Stepanyan H, Ghukasyan H, Qu Z, Belardinelli L, Karagueuzian HS (2014) Selective inhibition of late sodium current suppresses ventricular tachycardia and fibrillation in intact rat hearts. Heart Rhythm 11:492���501
  47. Pott C, Muszynski A, Ruhe M, B��geholz N, Schulte JS, Milberg P, M��nnig G, Fabritz L, Goldhaber JI, Breithardt G (2012) Proarrhythmia in a non-failing murine model of cardiac-specific Na/Ca exchanger overexpression: whole heart and cellular mechanisms. Basic Res Cardiol 107:1���13
  48. Rawlins J, Bhan A, Sharma S (2009) Left ventricular hypertrophy in athletes. Eur J Echocardiogr 10:350���356
  49. Rivaud MR, Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Rothenberg E, Bezzina CR, Delmar M, Remme CA (2017) Sodium channel remodeling in subcellular microdomains of murine failing cardiomyocytes. J Am Heart Assoc 6:e007622. https://doi.org/10.1161/JAHA.117.007622 [DOI: 10.1161/JAHA.117.007622]
  50. Rivolta I, Clancy CE, Tateyama M, Liu H, Priori SG, Kass RS (2002) A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction. Physiol Genomics 10:191���197
  51. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455���467
  52. Rozier K, Bondarenko VE (2017) Distinct physiological effects of ��1-and ��2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. Am J Physiol Cell Physiol 312:C595���C623
  53. Rubart M, Zipes DP (2005) Mechanisms of sudden cardiac death. J Clin Investig 115:2305���2315
  54. Ryall KA, Holland DO, Delaney KA, Kraeutler MJ, Parker AJ, Saucerman JJ (2012) Network reconstruction and systems analysis of cardiac myocyte hypertrophy signaling. J Biol Chem 287:42259���42268
  55. Scamps F, Mayoux E, Charlemagne D, Vassort G (1990) Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation. Circulat Res 67:199���208
  56. Schlegel P, Reinkober J, Meinhardt E, Tscheschner H, Gao E, Schumacher SM, Yuan A, Backs J, Most P, Wieland T (2017) G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PLoS ONE 12:e0182110
  57. Sicouri S, Belardinelli L, Antzelevitch C (2013) Antiarrhythmic effects of the highly selective late sodium channel current blocker GS-458967. Heart Rhythm 10:1036���1043
  58. Stengl M, Ramakers C, Donker DW, Nabar A, Rybin AV, Sp��tjens RL, van der Nagel T, Wodzig WK, Sipido KR, Antoons G (2006) Temporal patterns of electrical remodeling in canine ventricular hypertrophy: focus on IKs downregulation and blunted ��-adrenergic activation. Cardiovasc Res 72:90���100
  59. Tamayo M, Mart��n-Nunes L, Val-Blasco A, GM-Piedras MJ, Navarro-Garc��a JA, Lage E, Prieto P, Ruiz-Hurtado G, Fern��ndez-Velasco M, Delgado C, (2020) Beneficial effects of paricalcitol on cardiac dysfunction and remodelling in a model of established heart failure. Br J Pharmacol 177:3273���3290
  60. Thomas G, Gurung IS, Killeen MJ, Hakim P, Goddard CA, Mahaut-Smith MP, Colledge WH, Grace AA, Huang CLH (2007) Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3. J Physiol 578:85���97
  61. Toischer K, Rokita AG, Uns��ld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993���1003
  62. Toischer K, Hartmann N, Wagner S, Fischer TH, Herting J, Danner BC, Sag CM, Hund TJ, Mohler PJ, Belardinelli L (2013) Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol 61:111���122
  63. Tomaselli GF, Marban E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270���283. https://doi.org/10.1016/s0008-6363(99)00017-6 [DOI: 10.1016/s0008-6363(99)00017-6]
  64. Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K (2021) Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 11:12014
  65. Ujihara Y, Iwasaki K, Takatsu S, Hashimoto K, Naruse K, Mohri S, Katanosaka Y (2016) Induced NCX1 overexpression attenuates pressure overload-induced pathological cardiac remodelling. Cardiovasc Res 111:348���361
  66. Ungerer M, B��hm M, Elce J, Erdmann E, Lohse M (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454���463
  67. Wansapura AN, Lasko VM, Lingrel JB, Lorenz JN (2011) Mice expressing ouabain-sensitive ��1-Na,K-ATPase have increased susceptibility to pressure overload-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 300:H347-355. https://doi.org/10.1152/ajpheart.00625.2010 [DOI: 10.1152/ajpheart.00625.2010]
  68. Weiss JN, Garfinkel A, Karagueuzian HS, Chen P-S, Qu Z (2010) Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 7:1891���1899
  69. Wu Y, Temple J, Zhang R, Dzhura I, Zhang W, Trimble R, Roden DM, Passier R, Olson EN, Colbran RJ (2002) Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 106:1288���1293
  70. Xu H, Barry DM, Li H, Brunet S, Guo W, Nerbonne JM (1999) Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 �� subunit. Circ Res 85:623���633
  71. Yang T, Atack TC, Stroud DM, Zhang W, Hall L, Roden DM (2012) Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ Res 111:322���332
  72. Yokoshiki H, Kohya T, Tomita F, Tohse N, Nakaya H, Kanno M, Kitabatake A (1997) Restoration of action potential duration and transient outward current by regression of left ventricular hypertrophy. J Mol Cell Cardiol 29:1331���1339

MeSH Term

Animals
Myocytes, Cardiac
Mice
Models, Cardiovascular
Action Potentials
Computer Simulation
Heart Ventricles
Isoproterenol
Mathematical Concepts
Calcium Signaling
Disease Models, Animal
Calcium Channels, L-Type
Cardiomegaly
Calcium

Chemicals

Isoproterenol
Calcium Channels, L-Type
Calcium

Word Cloud

Created with Highcharts 10.0.0hypertrophicmodelcurrentmyocytesTACmousehypertrophydevelopedearlyCaventricularexperimentalmodelscardiacheartfailurestudiesstagechanges��-adrenergicdynamicsmathematicalcellEADsstimulationSimulationT-typeEADCa2+TransverseaorticconstrictiononedesignedinvestigatedevotedHoweverseveralstages1 weekdiseasefoundsignificantsystemelectricalactivityprovidequantitativedescriptionnewcompartmentalizedproceduredescribedgeometryactionpotentials[Ca]transients��-signalingsystemsalsoshoweddemonstratedafterdepolarizationsuponisoproterenolrelativelylongperiodsmyocyteactivitiesrevealedsynergisticeffectslateNaL-typeresponsibleinitiationmechanismssuppressioninvestigatedsensitivityanalysisperformedresultsobtainedcomparednormalcanusedexplanationexistingdatadevelopmentphenotypesmakeexperimentallytestablepredictionsmyocyte'sbehaviorMechanismsHypertrophicMouseVentricularMyocytes:InsightsCompartmentalizedMathematicalModelActionpotentialEarlyafterdepolarizationLateNa+

Similar Articles

Cited By

No available data.