An Asymptotic Analysis of Spike Self-Replication and Spike Nucleation of Reaction-Diffusion Patterns on Growing 1-D Domains.

Chunyi Gai, Edgardo Villar-Sep��lveda, Alan Champneys, Michael J Ward
Author Information
  1. Chunyi Gai: Department of Mathematics and Statistics, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada. chunyi.gai@unbc.ca. ORCID
  2. Edgardo Villar-Sep��lveda: Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TW, UK.
  3. Alan Champneys: Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TW, UK.
  4. Michael J Ward: Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.

Abstract

In the asymptotic limit of a large diffusivity ratio, certain two-component reaction-diffusion (RD) systems can admit localized spike solutions on a one-dimensional finite domain in a far-from-equilibrium nonlinear regime. It is known that two distinct bifurcation mechanisms can occur which generate spike patterns of increased spatial complexity as the domain half-length L slowly increases; so-called spike nucleation and spike self-replication. Self-replication is found to occur via the passage beyond a saddle-node bifurcation point that can be predicted through linearization around the inner spike profile. In contrast, spike nucleation occurs through slow passage beyond the saddle-node of a nonlinear boundary-value problem defined in the outer region away from the core of a spike. Here, by treating L as a static parameter under the Lagrangian framework, precise conditions are established within the semi-strong interaction asymptotic regime to determine which occurs, conditions that are confirmed by numerical simulation and continuation. For the Schnakenberg and Brusselator RD models, phase diagrams in parameter space are derived that predict whether spike self-replication or spike nucleation will occur first as L is increased, or whether no such instability will occur. For the Gierer-Meinhardt model with a non-trivial activator background, spike nucleation is shown to be the only possible spike-generating mechanism. From time-dependent PDE numerical results on an exponentially slowly growing domain, it is shown that the analytical thresholds derived from the asymptotic theory accurately predict critical values of L where either spike self-replication or spike-nucleation will occur. The global bifurcation mechanism for transitions to patterns of increased spatial complexity is further elucidated by superimposing time-dependent PDE simulation results on the numerically computed solution branches of spike equilibria in which L is the primary bifurcation parameter.

Keywords

References

  1. Al Saadi F, Champneys AR (2021) Unified framework for localized patterns in reaction-diffusion systems; the Gray-Scott and Gierer-Meinhardt cases. Phil Trans Roy Soc Lond A 379:37920200277
  2. Al Saadi F, Champneys AR, Gai C, Kolokolnikov T (2021) Spikes and localized patterns for a novel Schnakenberg model in the semi-strong interaction regime. Eur J Appl Math. https://doi.org/10.1017/S0956792520000431:1-20 [DOI: 10.1017/S0956792520000431]
  3. Al Saadi F, Champneys AR, Verschueren N (2021) Localised patterns and semi-strong interaction, a unifying framework for reaction-diffusion systems. IMA J Appl Math 86:1031���1065
  4. Barrass I, Crampin EJ, Maini PK (2006) Mode transitions in a model reaction-diffusion system driven by domain growth and noise. Bull Math Biol 68(5):981���995
  5. Beck M, Knobloch J, Lloyd DJB, Sandstede B, Wagenknecht T (2009) Snakes, ladders, and isolas of localized patterns. SIAM J Math Anal 41:936���972
  6. Berglund Nils, Gentz Barbara (2006) Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach. Probability and its applications. Springer, London
  7. Crampin EJ, Gaffney E, Maini P (2002) Mode-doubling and tripling in reaction-diffusion patterns on growing domains. J Math Biol 44:107���128
  8. Crampin EJ, Gaffney EA, Maini PK (1999) Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull Math Biol 61(6):1093���1120
  9. Crampin EJ, Hackborn WW, Maini PK (2002) Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull Math Biol 64:747���769
  10. Crampin EJ, Maini PK (2001) Reaction-diffusion models for biological pattern formation. Meth Appl Anal 8(2):415���428
  11. Doelman A, Kaper TJ, Peletier LA (2006) Homoclinic bifurcations at the onset of pulse self-replication. J Diff Eq 231(1):359���423
  12. Doelman A, Kaper TJ, Zegeling PA (1997) Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10(2):523
  13. Doelman A, Kaper TJ (2003) Semistrong pulse interactions in a class of coupled reaction-diffusion equations. SIAM J Appl Dyn Syst 2:53���96
  14. Doelman A, van der Ploeg H (2001) Homoclinic stripe patterns. SIAM J Appl Dyn Syst 1(1):65���104
  15. PDE FlexPDE (2015) Solutions inc. URL http://www. pdesolutions. com
  16. Gai C, Ward MJ (2024) The nucleation-annihilation dynamics of hotspot patterns for a reaction-diffusion system of urban crime with police deployment. SIAM J Appl Dyn Syst 24(3):2018���2060
  17. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30���39
  18. Iron D, Ward MJ, Wei J (2001) The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Physica D 150(1���2):25���62
  19. Iron D, Ward MJ, Wei J (2001) The stability of spike solutions to the one-dimensional gierer-meinhardt model. Physica D: Nonlinear Phenomena 150(1):25���62
  20. Klika V, Gaffney EA (2017) History dependence and the continuum approximation breakdown: the implace of domain growth on Turing���s instability. Proc R Soc A 473:20160744
  21. Knobloch E (2015) Spatial localization in dissipative systems. Annu Rev Condens Matter Phys 6:325���359
  22. Knobloch E, Krechetnikov R (2015) Problems on time-varying domains: formulation, dynamics and challenges. Acta Applicandae Mathematicae 137:123���157
  23. Kolokolnikov T, Sun W, Ward MJ, Wei J (2006) The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation. SIAM J Appl Dyn Syst 5(2):313���363
  24. Kolokolnikov T, Ward MJ, Wei J (2005) Pulse-splitting for some reaction-diffusion systems in one-space dimension. Stud Appl Math 114(2):115���165
  25. Kolokolnikov T, Ward MJ, Wei J (2007) Self-replication of mesa patterns in reaction-diffusion systems. Physica D 236(2):104���122
  26. Kolokolnikov T, Ward MJ, Wei J (2005) The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the pulse-splitting regime. Physica D: Nonlinear Phenomena 202(3���4):258���293
  27. Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376:765���768
  28. Kondo S, Watanabe M, Miyazawa S (2021) Studies of Turing pattern formation in zebrafish skin. Philos Trans A Math Phys Eng Sci 379:20200274
  29. Krause AL, Gaffney EA, Walker BJ (2023) Concentration-dependent domain evolution in reaction-diffusion systems. Bull Math Biol 85:14
  30. Kuehn C (2011) A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240(12):1020���1035
  31. Madzvamuse A (2006) Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J Comp Phys 214(1):239���263
  32. Madzvamuse A, Gaffney EA, Maini PK (2010) Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J Math Biol 61(1):133���164
  33. Madzvamuse A, Maini PK (2007) Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. J Comp Phys 225(1):100���119
  34. Muratov CB, Osipov VV (2000) Static spike autosolitons in the Gray-Scott model. J Phys A: Math General 33(48):8893
  35. Muratov CB, Osipov VV (2002) Stability of the static spike autosolitons in the Gray-Scott model. SIAM J Appl Math 62(5):1463���1487
  36. Neville AA, Matthews PC, Byrne HA (2006) Interactions between pattern formation and domain growth. Bull Math Biol 68:1975���2003
  37. Nishiura Y (2002) Far-from-Equilibrium Dynamics. Translations of Mathematical Monographs. American Math Society, New York
  38. Nishiura Y, Ueyama D (1999) A skeleton structure of self-replicating dynamics. Physica D 130(1):73���104
  39. Plaza RG, S��nchez-Gardu��o F, Padilla P, Barrio RA, Maini PK (2004) The effect of growth and curvature on pattern formation. J Dyn Diff Eq 16(4):1093���1121
  40. Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems II. J Chem Phys 48(4):1695���1700
  41. Siteur K, Siero E, Eppinga MB, Rademacher J, Doelman A, Rietkerk M (2014) Beyond turing: the response of patterned ecosystems to environmental change. Ecol Complex 20:81���96
  42. Tse WH, Ward MJ (2016) Hotspot formation and dynamics for a continuum model of urban crime. Eur J Appl Math 27(3):583���624
  43. Tsubota T, Liu C, Foster B, Knobloch E (2024) Bifurcation delay and front propagation in the real Ginzburg-Landau equation on a time-dependent domain. Phys Rev E 109:044210
  44. Turing A (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc London B 237:37���72
  45. Tzou JC, Nec Y, Ward MJ (2013) The stability of localized spikes for the 1-D Brusselator reaction diffusion model. Eur J Appl Math 24(4):515���564
  46. Tzou JC, Ward MJ, Kolokolnikov T (2015) Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems. Physica D 290(1):24���43
  47. Tzou JC, Nec Y, Ward MJ (2013) The stability of localized spikes for the 1-d brusselator reaction-diffusion model. Eur J Appl Math 24(4):515���564
  48. Uecker H (2021) Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia
  49. Ueda K, Nishiura Y (2012) A mathematical mechanism for instabilities in stripe formation on growing domains. Physica D 241:37���59
  50. Van Gorder RA, Klika V, Krause AL (2020) Turing conditions for pattern forming systems on evolving manifolds. J Math Biol 82:4
  51. Verschueren N, Champneys AR (2021) Dissecting the snake: transition from localized patterns to spike solutions. Physica D: Nonlinear Phenomena 419:132858
  52. Villar-Sep��lveda E, Champneys AR (2023) Degenerate turing bifurcation and the birth of localized patterns in activator-inhibitor systems. SIAM J Appl Dyn Syst 22:1673���1709
  53. Volkening A, Sandstede B (2015) Modeling stripe formation in zebrafish: an agent-based approach. J Royal Soc Interface 12:20150812
  54. Ward MJ, Wei J (2002) The existence and stability of asymmetric spike patterns for the Schnakenberg model. Stud Appl Math 109(3):229���264
  55. Wong T, Ward MJ (2022) Dynamics of patchy vegetation patterns in the two-dimensional generalized Klausmeir model. DCDS Series S 15(9):2747���2793

Grants

  1. 72210071/ANID, Beca Chile Doctorado en el extranjero

MeSH Term

Mathematical Concepts
Computer Simulation
Nonlinear Dynamics
Models, Neurological
Action Potentials
Animals
Neurons
Humans
Diffusion

Word Cloud

Created with Highcharts 10.0.0spikeoccurLnucleationasymptoticbifurcationself-replicationSpikecandomainincreasedparameterwillRDnonlinearregimepatternsspatialcomplexityslowlypassagebeyondsaddle-nodeoccursconditionsnumericalsimulationderivedpredictwhethershownmechanismtime-dependentPDEresultsGrowinglimitlargediffusivityratiocertaintwo-componentreaction-diffusionsystemsadmitlocalizedsolutionsone-dimensionalfinitefar-from-equilibriumknowntwodistinctmechanismsgeneratehalf-lengthincreasesso-calledSelf-replicationfoundviapointpredictedlinearizationaroundinnerprofilecontrastslowboundary-valueproblemdefinedouterregionawaycoretreatingstaticLagrangianframeworkpreciseestablishedwithinsemi-stronginteractiondetermineconfirmedcontinuationSchnakenbergBrusselatormodelsphasediagramsspacefirstinstabilityGierer-Meinhardtmodelnon-trivialactivatorbackgroundpossiblespike-generatingexponentiallygrowinganalyticalthresholdstheoryaccuratelycriticalvalueseitherspike-nucleationglobaltransitionselucidatedsuperimposingnumericallycomputedsolutionbranchesequilibriaprimaryAsymptoticAnalysisSelf-ReplicationNucleationReaction-DiffusionPatterns1-DDomainsdomainsMatchedanalysisReaction-diffusion

Similar Articles

Cited By

No available data.