Optimizing Intranasal Amisulpride Loaded Nanostructured Lipid Carriers: Formulation, Development, and Characterization Parameters.

Manar Adnan Tamer, Hanan Jalal Kassab
Author Information
  1. Manar Adnan Tamer: Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq. ORCID
  2. Hanan Jalal Kassab: Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq. ORCID

Abstract

BACKGROUND: Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles composed of a mixture of solid and liquid lipids, which are stabilized by the outer surface of a surfactant.
OBJECTIVES: This research aimed to prepare intranasal nanostructured lipid carriers loaded with amisulpride to enhance its dissolution and bioavailability using different formulation compositions.
METHODS: Amisulpride nanostructured lipid carriers were formulated using ultra-sonication methods. Solid lipids like stearic acid, palmitic acid, and glyceryl monostearate were used, while liquid lipids like oleic acid, Imwitor 988, and isopropyl myristate were employed. Surfactants used were cremophor®EL, tween 80, and span 20 with different co-surfactants: Transcutol HP, triacetin, and propylene glycol in different ratios. The key metrics used in this study's evaluation were particle size, polydispersity index, zeta potential, entrapment efficiency, and loading efficiency. The formulations with the best characteristics were also subjected to an release test.
RESULTS: The results showed a significant shift in some evaluation criteria with a non-significant change in other characterizations upon switching between different types and ratios of compositions. A biphasic release pattern was also observed. The optimum formula F19 was found to have 68.309±0.38 nm, 0.2408±0.004, -20.64±0.11 mV, 95.75±0.26 and 18.07±0.36, respectively. It was safe on the sheep nasal membrane.
CONCLUSION: The right combination of the formulation compositions based on studying the effect of each factor on the main formulation characteristics can serve as the basis for a successful intranasal amisulpride-loaded nanostructured lipid carrier.

Keywords

References

  1. S S.S.; Misran M.; Optimization and characterization of fatty acid esters (FAES) based nanostructured lipid carrier (NLC) by box-behnken analysis. Sains Malays 2022,51(7),2119-2128 [DOI: 10.17576/jsm-2022-5107-14]
  2. Gordillo-Galeano A.; Mora-Huertas C.E.; Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018,133,285-308 [DOI: 10.1016/j.ejpb.2018.10.017]
  3. Khan S.; Sharma A.; Jain V.; An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull 2023,13(3),446-460 [DOI: 10.34172/apb.2023.056]
  4. Elmowafy M; Al-Sanea MM; Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021,29(9),999-1012 [DOI: 10.1016/j.jsps.2021.07.015]
  5. Viegas C.; Patrício A.B.; Prata J.M.; Nadhman A.; Chintamaneni P.K.; Fonte P.; Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023,15(6),1593 [DOI: 10.3390/pharmaceutics15061593]
  6. Shah S.; Patel A.A.; Pandya V.; Trivedi N.; Patel S.G.; Prajapati B.G.; Singh S.; Patel R.J.; Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment. J Drug Deliv Sci Technol 2023,90,105160 [DOI: 10.1016/j.jddst.2023.105160]
  7. Alatawi H.M.; Alhwiti S.S.; Alsharif K.A.; Albalawi S.S.; Abusaleh S.M.; Sror G.K.; Qushawy M.; Nanostructured lipid carriers (NLCs) as effective drug delivery systems: Methods of preparation and their therapeutic applications. Recent Pat Nanotechnol 2024,18(2),179-189 [DOI: 10.2174/1872210517666230120142439]
  8. Hauss D.J.; Oral lipid-based formulations. Adv Drug Deliv Rev 2007,59(7),667-676 [DOI: 10.1016/j.addr.2007.05.006]
  9. Blanco-Llamero C.; Fonseca J.; Durazzo A.; Lucarini M.; Santini A.; Señoráns F.J.; Souto E.B.; Nutraceuticals and food-grade lipid nanoparticles: From natural sources to a circular bioeconomy approach. Foods 2022,11(15),2318 [DOI: 10.3390/foods11152318]
  10. Ahmad J.; Rizwanullah M.; Amin S.; Warsi M.H.; Ahmad M.Z.; Barkat M.A.; Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr Drug Metab 2020,21(14),1136-1143 [DOI: 10.2174/1389200221666200719003304]
  11. Mohammadi-Samani S.; Ghasemiyeh P.; Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci 2018,13(4),288-303 [DOI: 10.4103/1735-5362.235156]
  12. Javed S.; Mangla B.; Almoshari Y.; Sultan M.H.; Ahsan W.; Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery. Nanotechnol Rev 2022,11(1),1744-1777 [DOI: 10.1515/ntrev-2022-0109]
  13. Zhao X.L.; Yang C.R.; Yang K.L.; Li K.X.; Hu H.Y.; Chen D.W.; Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil. Drug Dev Ind Pharm 2010,36(7),773-780 [DOI: 10.3109/03639040903485716]
  14. Alavian F.; Shams N.; Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and disadvantages. Curr Clin Pharmacol 2020,15(1),20-29 [DOI: 10.2174/22123938OTkzpOTU1TcVY]
  15. Ahmad E.; Feng Y.; Qi J.; Fan W.; Ma Y.; He H.; Xia F.; Dong X.; Zhao W.; Lu Y.; Wu W.; Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale 2017,9(3),1174-1183 [DOI: 10.1039/C6NR07581A]
  16. Schoemaker H.; Claustre Y.; Fage D.; Rouquier L.; Chergui K.; Curet O.; Oblin A.; Gonon F.; Carter C.; Benavides J.; Scatton B.; Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 1997,280(1),83-97 [PMID: 8996185]
  17. Perrault G.; Depoortere R.; Morel E.; Sanger D.J.; Scatton B.; Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 1997,280(1),73-82 [PMID: 8996184]
  18. Möller H.J.; Management of the negative symptoms of schizophrenia: new treatment options. CNS Drugs 2003,17(11),793-823 [DOI: 10.2165/00023210-200317110-00003]
  19. Gamal W.; Fahmy R.H.; Mohamed M.I.; Development of novel amisulpride-loaded liquid self-nanoemulsifying drug delivery systems via dual tackling of its solubility and intestinal permeability. Drug Dev Ind Pharm 2017,43(9),1530-1538 [DOI: 10.1080/03639045.2017.1322607]
  20. Habib A.S.; Kranke P.; Bergese S.D.; Chung F.; Ayad S.; Siddiqui N.; Motsch J.; Leiman D.G.; Melson T.I.; Diemunsch P.; Fox G.M.; Candiotti K.A.; Amisulpride for the rescue treatment of postoperative nausea or vomiting in patients failing prophylaxis. Anesthesiology 2019,130(2),203-212 [DOI: 10.1097/ALN.0000000000002509]
  21. Khan S.; Shaharyar M.; Fazil M.; Hassan M.Q.; Baboota S.; Ali J.; Tacrolimus-loaded nanostructured lipid carriers for oral delivery-in vivo bioavailability enhancement. Eur J Pharm Biopharm 2016,109,149-157 [DOI: 10.1016/j.ejpb.2016.10.011]
  22. Rajab N.A.; Jawad M.S.; Impact of lipid type and ratio in rizatriptan benzoate nanostructured lipid carrier. Int J Drug Deliv Technol 2023,13(1),112-119 [DOI: 10.25258/ijddt.13.1.17]
  23. Gaba B.; Fazil M.; Khan S.; Ali A.; Baboota S.; Ali J.; Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ 2015,53(2),147-159 [DOI: 10.1016/j.bfopcu.2015.10.001]
  24. Poonia N.; Kharb R.; Lather V.; Pandita D.; Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci OA 2016,2(3),FSO135 [DOI: 10.4155/fsoa-2016-0030]
  25. Nasr A.; Gardouh A.; Ghonaim H.; Abdelghany E.L.; Ghorab M.; Effect of oils, surfactants and cosurfactants on phase behavior and physicochemical properties of self-nanoemulsifying drug delivery system (SNEDDS) for irbesartan and olmesartan. Int J Appl Pharm 2016,8(1),13-24 [DOI: 10.22159/ijap.2016v8i1.10530]
  26. Al-Sarraf M.A.; Hussein A.A.; Al-Sarraf Z.A.; Comparison between conventional gel and nanostructured lipid carrier gel of zaltoprofen: Preparation and in-vitro/ex-vivo evaluation. Int J Drug Deliv Tech 2021,11(3),988-995 [DOI: 10.25258/ijddt.11.3.57]
  27. Salih Z.T.; Al-Gawhari F.; Improvement of entrapment and ocular permeability of ganciclovir nanostructured lipid carriers using various conditions of preparations. Int J Drug Deliv Technol 2023,13(1),341-346 [DOI: 10.25258/ijddt.13.1.55]
  28. Rajab N.A.; Jawad M.S.; Preparation and evaluation of rizatriptan benzoate loaded nanostructured lipid carrier using diff erent surfactant/co-surfactant systems. Int J Drug Deliv Technol 2023,13(1),120-126 [DOI: 10.25258/ijddt.13.1.18]
  29. Abed H.N.; Hussein A.A.; Formulation and in-vitro evaluation of dabigatran etexilate loaded nanostructured lipid carriers. J Glob Pharma Technol 2019,11(03)
  30. Karami S.; Rostamizadeh K.; Shademani N.; Parsa M.; Synthesis and investigation of the curcumin-loaded magnetic lipid nanoparticles and their cytotoxicity assessment on human breast carcinoma cell line. Jundishapur J Nat Pharm Prod 2020,15(2),e91886 [DOI: 10.5812/jjnpp.91886]
  31. Baig M.S.; Owida H.; Njoroge W.; Siddiqui A-R.; Yang Y.; Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin. J Drug Deliv Sci Technol 2020,55,101496 [DOI: 10.1016/j.jddst.2019.101496]
  32. Mallappa D.P.; Chelsea F.R.; Ratnakar R.P.; Panchakshari G.A.; Shivamurthi M.V.; Uppinangady B.S.; Development and characterization of mucoadhesive buccal gel containing lipid nanoparticles of triamcinolone acetonide. Indian J Pharm Educ Res 2020,54(3s),s505-s511 [DOI: 10.5530/ijper.54.3s.149]
  33. Tamer M.A.; Kassab H.J.; The development of a brain targeted mucoadhesive amisulpride loaded nanostructured lipid carrier. Farmacia 2023,71(5),1032-1044 [DOI: 10.31925/farmacia.2023.5.18]
  34. Ala Allah A.; Hussein A.; Darifenacin Hydrobromide loaded nanostructured lipid carrier for oral administration. Iraqi J Pharm Sci 2018,27(1),53-68 [DOI: 10.31351/vol27iss1pp53-68]
  35. Sabri L.A.; Hussein A.A.; Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: Preparation and in-vitro/ex-vivo evaluation. Iraqi J Pharm Sci 2020,29(1),216-225 [DOI: 10.31351/vol29iss1pp216-225]
  36. Hashim A.A.; Rajab N.A.; Anastrozole loaded nanostructured lipid carriers: Preparation and evaluation. Iraqi J Pharm Sci 2021,30(2),185-195 [DOI: 10.31351/vol30iss2pp185-195]
  37. Jogani V.V.; Shah P.J.; Mishra P.; Mishra A.K.; Misra A.R.; Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting. Alzheimer Dis Assoc Disord 2008,22(2),116-124 [DOI: 10.1097/WAD.0b013e318157205b]
  38. Elsenosy F.M.; Abdelbary G.A.; Elshafeey A.H.; Elsayed I.; Fares A.R.; Brain targeting of duloxetine HCL via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies. Int J Nanomedicine 2020,15,9517-9537 [DOI: 10.2147/IJN.S277352]
  39. Hu F.Q.; Jiang S.P.; Du Y.Z.; Yuan H.; Ye Y.Q.; Zeng S.; Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 2006,314(1),83-89 [DOI: 10.1016/j.ijpharm.2006.01.040]
  40. Aultonm M.; pharmaceuticsthe science of dosage form design 2002,414-418
  41. Tang F.; Zhang Y.; Lin S.; Guo Z.; Solubility and micronization of ganciclovir. In: Advanced Materials Research 2012,1421-1426 [DOI: 10.4028/www.scientific.net/AMR.393-395.1421]
  42. Lee Y.C.; Dalton C.; Regler B.; Harris D.; Drug solubility in fatty acids as a formulation design approach for lipid-based formulations: A technical note. Drug Dev Ind Pharm 2018,44(9),1551-1556 [DOI: 10.1080/03639045.2018.1483395]
  43. Cao Y.; Marra M.; Anderson B.D.; Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J Pharm Sci 2004,93(11),2768-2779 [DOI: 10.1002/jps.20126]
  44. Chen C.C.; Tsai T.H.; Huang Z.R.; Fang J.Y.; Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 2010,74(3),474-482 [DOI: 10.1016/j.ejpb.2009.12.008]
  45. Mehnert W.; Mäder K.; Solid lipid nanoparticles. Adv Drug Deliv Rev 2012,64,83-101 [DOI: 10.1016/j.addr.2012.09.021]
  46. Monteiro L.M.; Löbenberg R.; Cotrim P.C.; Barros de Araujo G.L.; Bou-Chacra N.; Buparvaquone nanostructured lipid carrier: development of an affordable delivery system for the treatment of leishmaniases. BioMed Res Int 2017,2017,1-11 [DOI: 10.1155/2017/9781603]
  47. Hejri A.; Khosravi A.; Gharanjig K.; Hejazi M.; Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem 2013,141(1),117-123 [DOI: 10.1016/j.foodchem.2013.02.080]
  48. Subramaniam B.; Siddik Z.H.; Nagoor N.H.; Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res 2020,22(6),141 [DOI: 10.1007/s11051-020-04848-0]
  49. Das S; Ng WK; Tan RB; Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 2012,47(1),139-151 [DOI: 10.1016/j.ejps.2012.05.010]
  50. Rathod V.R.; Shah D.A.; Dave R.H.; Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables. Drug Dev Ind Pharm 2020,46(3),443-455 [DOI: 10.1080/03639045.2020.1724135]
  51. Mehnert W; Mäder K.; Solid lipid nanoparticles: Production, characterization and applications Adv Drug Deliv Rev 2001,47((2-3)),165-196 [DOI: 10.1016/S0169-409X(01)00105-3]
  52. Pizzol C.; Filippin-Monteiro F.; Restrepo J.; Pittella F.; Silva A.; Alves de Souza P.; Machado de Campos A.; Creczynski-Pasa T.; Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int J Environ Res Public Health 2014,11(8),8581-8596 [DOI: 10.3390/ijerph110808581]
  53. Gidwani B.; Vyas A.; Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using box-behnken design and response surface methodology. Artif Cells Nanomed Biotechnol 2016,44(2),571-580 [DOI: 10.3109/21691401.2014.971462]
  54. Yu S.; Tan G.; Liu D.; Yang X.; Pan W.; Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: design, characterization and in vitro cellular inhibition and uptake studies. RSC Advances 2017,7(27),16668-16677 [DOI: 10.1039/C7RA00552K]
  55. Wang G.; Yu B.; Wu Y.; Huang B.; Yuan Y.; Liu C.S.; Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm 2013,446(1-2),24-33 [DOI: 10.1016/j.ijpharm.2013.02.004]
  56. Zhao P.; Li L.; Zhou S.; Qiu L.; Qian Z.; Liu X.; Cao X.; Zhang H.; TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater Sci Eng C 2018,84,108-117 [DOI: 10.1016/j.msec.2017.11.040]
  57. Han S.M.; Baek J.S.; Kim M.S.; Hwang S.J.; Cho C.W.; Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chem Phys Lipids 2018,213,39-47 [DOI: 10.1016/j.chemphyslip.2018.03.005]
  58. Dagtepe P; Chikan V.; Quantized ostwald ripening of colloidal nanoparticles. J Phys Chem C 2010,114(39),16263-16269 [DOI: 10.1021/jp105071a]
  59. Sheskey P.J.; Cook W.G.; Gable C.G.; Handbook ofpharmaceutical excipients 2017,413-639
  60. Astley C.; Houacine C.; Zaabalawi A.; Wilkinson F.; Lightfoot A.P.; Alexander Y.; Whitehead D.; Singh K.K.; Azzawi M.; Nanostructured lipid carriers deliver resveratrol, restoring attenuated dilation in small coronary arteries, via the AMPK pathway. Biomedicines 2021,9(12),1852 [DOI: 10.3390/biomedicines9121852]
  61. Abed H.N.; Hussein A.A.; Ex-vivo absorption study of a novel dabigatran etexilate loaded nanostructured lipid carrier using non-everted intestinal SAC model. Iraqi J Pharm Sci 2019,28(2),37-45 [DOI: 10.31351/vol28iss2pp37-45]
  62. Yousaf R; Khan MI; Akhtar MF; Madni A; Sohail MF; Saleem A; Irshad K; Sharif A; Rana M; Development and in vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole Heliyon 2023,9(3),e14281
  63. Madan J.; Dua K.; Khude P.A.; Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharm Investig 2014,4(2),60-64 [DOI: 10.4103/2230-973X.133047]
  64. Merck M.J.; O’Neil ; Smith A.; Patricia E.H.; Budavari S.; The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals 2013,502
  65. Sherif A.Y.; Harisa G.I.; Shahba A.A.; Alanazi F.K.; Qamar W.; Optimization of gefitinib-loaded nanostructured lipid carrier as a biomedical tool in the treatment of metastatic lung cancer. Molecules 2023,28(1),448 [DOI: 10.3390/molecules28010448]
  66. Czajkowska-Kośnik A.; Szymańska E.; Czarnomysy R.; Jacyna J.; Markuszewski M.; Basa A.; Winnicka K.; Nanostructured lipid carriers engineered as topical delivery of etodolac: Optimization and cytotoxicity studies. Materials 2021,14(3),596 [DOI: 10.3390/ma14030596]
  67. Sivadasu Praveen; Gowda D.V.; Srivastava Atul; Ali Riyaz; Osmani M.; Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride. Pharm Lett 2016,8(7),251-256
  68. Das S.; Ng W.K.; Kanaujia P.; Kim S.; Tan R.B.H.; Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables. Colloids Surf B Biointerfaces 2011,88(1),483-489 [DOI: 10.1016/j.colsurfb.2011.07.036]
  69. Mu L.; Feng S.S.; A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003,86(1),33-48 [DOI: 10.1016/S0168-3659(02)00320-6]
  70. Gorain B.; Choudhury H.; Pandey M.; Kesharwani P.; Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater Sci Eng C 2018,91,868-880 [DOI: 10.1016/j.msec.2018.05.054]
  71. Tran T.H.; Ramasamy T.; Truong D.H.; Choi H.G.; Yong C.S.; Kim J.O.; Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech 2014,15(6),1509-1515 [DOI: 10.1208/s12249-014-0175-y]
  72. Elmowafy M.; Shalaby K.; Badran M.M.; Ali H.M.; Abdel-Bakky M.S.; Ibrahim H.M.; Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm 2018,550(1-2),359-371 [DOI: 10.1016/j.ijpharm.2018.08.062]
  73. Ling Tan J.S.; Roberts C.J.; Billa N.; Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 2019,24(4),504-512 [DOI: 10.1080/10837450.2018.1515225]
  74. Egerton R.; Physical principles of electron microscopy: An introduction to TEM, SEM and AEM 2016,16-147 [DOI: 10.1007/978-3-319-39877-8]
  75. Angelo T.; El-Sayed N.; Jurisic M.; Koenneke A.; Gelfuso G.M.; Cunha-Filho M.; Taveira S.F.; Lemor R.; Schneider M.; Gratieri T.; Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci Rep 2020,10(1),176 [DOI: 10.1038/s41598-019-56760-w]
  76. Barakat N.S.; Omar S.A.; Ahmed A A E.; Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol 2010,58(1),63-72 [DOI: 10.1211/jpp.58.1.0008]
  77. Jadhav S.A.; Landge S.B.; Choudhari P.M.; Solanki P.V.; Bembalkar S.R.; Mathad V.T.; Stress degradation behavior of paliperidone, an antipsychotic drug, and development of suitable stability-indicating RP-LC method. Chromatogr Res Int 2011,2011,1-10 [DOI: 10.4061/2011/256812]
  78. Freitas C.; Müller R.H.; Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int J Pharm 1998,168,221-229
  79. Heurtault B.; Saulnier P.; Pech B.; Proust J.E.; Benoit J.P.; Physico-chemical stability of colloidal lipid particles. Biomaterials 2003,24(23),4283-4300 [DOI: 10.1016/S0142-9612(03)00331-4]
  80. Freitas C.; Müller R.H.; Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 1999,47(2),125-132 [DOI: 10.1016/S0939-6411(98)00074-5]

MeSH Term

Administration, Intranasal
Amisulpride
Drug Carriers
Drug Liberation
Particle Size
Animals
Lipids
Surface-Active Agents
Nanostructures
Drug Compounding
Nanoparticles
Solubility
Antipsychotic Agents
Biological Availability
Nasal Mucosa

Chemicals

Amisulpride
Drug Carriers
Lipids
Surface-Active Agents
Antipsychotic Agents

Word Cloud

Created with Highcharts 10.0.0lipidcarriersnanostructureddifferentlipidsintranasalformulationcompositionsAmisulprideacidusedefficiencyNanostructuredliquidusinglikeratiosevaluationparticlesizepolydispersityindexzetapotentialentrapmentloadingcharacteristicsalsoreleasepercentageBACKGROUND:NLCslipid-basednanoparticlescomposedmixturesolidstabilizedoutersurfacesurfactantOBJECTIVES:researchaimedprepareloadedamisulprideenhancedissolutionbioavailabilityMETHODS:formulatedultra-sonicationmethodsSolidstearicpalmiticglycerylmonostearateoleicImwitor988isopropylmyristateemployedSurfactantscremophor®ELtween80span20co-surfactants:TranscutolHPtriacetinpropyleneglycolkeymetricsstudy'sformulationsbestsubjectedtestRESULTS:resultsshowedsignificantshiftcriterianon-significantchangecharacterizationsuponswitchingtypesbiphasicpatternobservedoptimumformulaF19found68309±038nm02408±0004-2064±011mV9575±0261807±036respectivelysafesheepnasalmembraneCONCLUSION:rightcombinationbasedstudyingeffectfactormaincanservebasissuccessfulamisulpride-loadedcarrierOptimizingIntranasalLoadedLipidCarriers:FormulationDevelopmentCharacterizationParametersdrug

Similar Articles

Cited By