seed proteins effect on snake venom enzymes with antioxidant and antibacterial activities.

Wajiha Tahir, Syeda M Fatima, Syed F Moin, Mahera Moin, Humera Waheed
Author Information
  1. Wajiha Tahir: Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
  2. Syeda M Fatima: Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
  3. Syed F Moin: Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, Pakistan.
  4. Mahera Moin: Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
  5. Humera Waheed: Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.

Abstract

Objective: This study assessed the inhibitory potential of proteins extracted from seeds on snake venom toxic enzymes along with their potential antioxidant and antibacterial activities.
Methods: Crude proteins were extracted using common biological buffers (20 mM acetate, 20 mM phosphate and 20 mM Tris) at a ratio of 1:5 followed by 80 % ammonium sulfate precipitation, dialysis, and lyophilization. Then the lyophilized extracts were resolved on 15 % sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) gels. The Tris extract showing the maximum number of protein bands on the SDS gel was further assessed for inhibitory bioactivities. Specifically, the agar well diffusion method was performed to assess the inhibitory activities of phospholipase A2 (PLA2), protease, and ��-amylase using 2 % egg yolk, 5 % skim milk and 1 % starch as substrates, respectively. venom, and human saliva were used as sources of PLA2, protease, and amylase, respectively, to test the inhibitory activity of the extract on these enzymes. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay using ascorbic acid as a standard. Antibacterial activity was assessed by the agar well diffusion method using and as bacterial sources.
Results: The Tris extract of seed proteins exhibited 19 % inhibition of snake venom PLA2 at a concentration of 125 ��g/��L concentration, whereas no venom protease inhibition or antibacterial activity was observed at the highest concentrations analyzed. Significant antioxidant activity (44.9 %) was observed at 600 ��g/��L, while ��-amylase-enhancing activity in a concentration-dependent manner was noted.
Conclusion: The results of this study demonstrated snake venom PLA2 neutralization, which is a major toxic enzyme present in snake venom, along with significant antioxidant properties. This study highlights the potential of seed proteins as an antiophidic along with other therapeutically important applications.

Keywords

References

  1. Food Sci Nutr. 2023 Apr 17;11(6):2500-2529 [PMID: 37324906]
  2. Plants (Basel). 2024 Mar 04;13(5): [PMID: 38475570]
  3. Afr J Tradit Complement Altern Med. 2017 Jan 13;14(2):1-8 [PMID: 28573216]
  4. Antioxidants (Basel). 2021 Aug 15;10(8): [PMID: 34439539]
  5. Foods. 2021 Nov 04;10(11): [PMID: 34828976]
  6. Biochimie. 2006 Jun;88(6):701-10 [PMID: 16494989]
  7. BMC Public Health. 2022 Mar 30;22(1):623 [PMID: 35354446]
  8. Int J Mol Sci. 2009 Jun 23;10(6):2860-2872 [PMID: 19582234]
  9. Front Immunol. 2022 May 09;13:842576 [PMID: 35615352]
  10. F1000Res. 2017 Feb 7;6:113 [PMID: 28232867]
  11. Plant Cell. 2015 Aug;27(8):2095-118 [PMID: 26276833]
  12. Toxicon X. 2021 Jun 18;9-10:100069 [PMID: 34258577]
  13. Curr Neuropharmacol. 2022;20(8):1554-1563 [PMID: 34951390]
  14. Toxins (Basel). 2016 Mar 01;8(3): [PMID: 26938561]
  15. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  16. World J Diabetes. 2016 Mar 25;7(6):112-21 [PMID: 27022442]
  17. Drug Discov Today. 2019 Sep;24(9):1877-1889 [PMID: 31170506]
  18. Cancer Prev Res (Phila). 2013 May;6(5):410-8 [PMID: 23639862]
  19. Curr Res Toxicol. 2023 May 13;4:100106 [PMID: 37228329]
  20. Nat Commun. 2023 Apr 27;14(1):2411 [PMID: 37105998]
  21. Nat Rev Chem. 2022;6(7):451-469 [PMID: 35702592]
  22. Plant Cell. 1995 Jul;7(7):945-56 [PMID: 7640527]
  23. Int J Biol Macromol. 2018 Jul 1;113:329-337 [PMID: 29481953]
  24. J Biol Chem. 2016 May 20;291(21):11373-84 [PMID: 26987900]
  25. Curr Protein Pept Sci. 2020;21(5):443-487 [PMID: 31746291]
  26. Molecules. 2016 Jan 12;21(1):72 [PMID: 26771594]
  27. Bioinformation. 2018 Jun 30;14(6):285-293 [PMID: 30237674]
  28. Sci Rep. 2019 Mar 11;9(1):4148 [PMID: 30858403]

Word Cloud

Created with Highcharts 10.0.0venomactivityproteinssnakeinhibitoryantioxidantusingextractPLA2studyassessedpotentialenzymesalongantibacterialactivities20 mMTrisproteaseseedextractedtoxicsulfateagarwelldiffusionmethodA2respectivelysourcesinhibitionconcentrationobservedObjective:seedsMethods:Crudecommonbiologicalbuffersacetatephosphateratio1:5followed80 %ammoniumprecipitationdialysislyophilizationlyophilizedextractsresolved15 %sodiumdodecylpolyacrylamideelectrophoresisSDS-PAGEgelsshowingmaximumnumberproteinbandsSDSgelbioactivitiesSpecificallyperformedassessphospholipase��-amylase2 %eggyolk5 %skimmilk1 %starchsubstrateshumansalivausedamylasetestAntioxidantdetermined22-diphenyl-1-picrylhydrazylDPPHfreeradicalscavengingassayascorbicacidstandardAntibacterialbacterialResults:exhibited19 %125 ��g/��LwhereashighestconcentrationsanalyzedSignificant449 %600 ��g/��L��-amylase-enhancingconcentration-dependentmannernotedConclusion:resultsdemonstratedneutralizationmajorenzymepresentsignificantpropertieshighlightsantiophidictherapeuticallyimportantapplicationseffectDaturaalbaInhibitionPhospholipaseProteinSeedsSnake

Similar Articles

Cited By