Volatile and non-volatile compound analysis of ginkgo chicken soup during cooking using a combi oven.

Lilan Chen, Jiale Huang, Can Yuan, Songcheng Zhan, Mingfeng Qiao, Yuwen Yi, Chunyou Luo, Ruixue Ma
Author Information
  1. Lilan Chen: Sichuan Tourism University, Chengdu 610100, China.
  2. Jiale Huang: Sichuan Tourism University, Chengdu 610100, China.
  3. Can Yuan: Sichuan Tourism University, Chengdu 610100, China.
  4. Songcheng Zhan: Sichuan Tourism University, Chengdu 610100, China.
  5. Mingfeng Qiao: Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China.
  6. Yuwen Yi: Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China.
  7. Chunyou Luo: Sichuan Tourism University, Chengdu 610100, China.
  8. Ruixue Ma: Sichuan Tourism University, Chengdu 610100, China.

Abstract

This study employed a range of analytical techniques to evaluate the changes in both volatile and non-volatile compounds during different cooking times (30, 60, 90, 120, and 150 min) of ginkgo chicken soup prepared using a multifunctional combi oven, and comparedthese results with those obtained from the traditional ceramic pot method.The techniques included electronic nose (e-nose), electronic tongue (e-tongue), gas chromatography-ion mobility spectrometry (GC-IMS), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and automated amino acid analysis. A total of 64 volatile compounds, primarily aldehydes, ketones, esters, and alcohols, were detected, with 23 key aroma components identified. Principal component analysis (PCA) demonstrated similar aroma and taste profiles between the two cooking methods. Additionally, 22 amino acids, 6 nucleotides enhancing umami, and 18 fatty acids were categorized into saturated, monounsaturated, and polyunsaturated groups. Pearson correlation revealed significant relationships among key amino acids, 5'-nucleotides, and volatile compounds, providing insights into industrial-scale applications of multifunctional ovens in ginkgo chicken soup production.

Keywords

References

  1. Food Chem X. 2023 Apr 29;18:100696 [PMID: 37187488]
  2. Food Chem. 2019 Jul 15;286:71-77 [PMID: 30827667]
  3. Foods. 2022 Feb 26;11(5): [PMID: 35267331]
  4. Food Res Int. 2024 Sep;192:114772 [PMID: 39147494]
  5. Food Chem. 2020 Jun 15;315:126158 [PMID: 32014672]
  6. J Food Sci. 2017 Sep;82(9):2031-2040 [PMID: 28732107]
  7. J Food Sci. 2022 Jun;87(6):2563-2577 [PMID: 35584965]
  8. Food Chem X. 2023 Dec 12;21:101059 [PMID: 38292677]
  9. Food Chem. 2018 Nov 01;265:274-280 [PMID: 29884383]
  10. Food Res Int. 2018 Jul;109:72-81 [PMID: 29803494]
  11. Food Res Int. 2017 Dec;102:559-566 [PMID: 29195986]
  12. J Food Biochem. 2021 Jul 12;:e13770 [PMID: 34254338]
  13. J Food Sci. 2016 Mar;81(3):C578-86 [PMID: 26809140]
  14. Food Chem. 2025 Jan 15;463(Pt 2):141264 [PMID: 39288457]
  15. J Chromatogr A. 2002 Jul 19;963(1-2):83-8 [PMID: 12188004]
  16. Food Sci Anim Resour. 2024 May;44(3):651-661 [PMID: 38765279]
  17. Food Res Int. 2021 Feb;140:110008 [PMID: 33648240]
  18. Food Chem. 2023 Jan 1;398:133913 [PMID: 35964560]
  19. Food Chem. 2022 Nov 1;393:133416 [PMID: 35696950]
  20. Foods. 2021 Jun 23;10(7): [PMID: 34201805]
  21. Food Chem X. 2024 Jul 04;23:101623 [PMID: 39100245]
  22. J Pharm Biomed Anal. 2021 Jan 30;193:113704 [PMID: 33157480]
  23. J Sci Food Agric. 2022 Jul;102(9):3703-3711 [PMID: 34893990]
  24. Front Nutr. 2022 Nov 15;9:1048352 [PMID: 36458169]
  25. Food Res Int. 2021 Feb;140:109975 [PMID: 33648211]
  26. Food Chem. 2022 Feb 1;369:130939 [PMID: 34469843]
  27. Foods. 2023 Feb 03;12(3): [PMID: 36766202]

Word Cloud

Created with Highcharts 10.0.0compoundschickensoupanalysisvolatilecookingginkgoovenaminoacidstechniquesnon-volatileusingmultifunctionalcombielectronicgasspectrometrykeyaromastudyemployedrangeanalyticalevaluatechangesdifferenttimes306090120150 minpreparedcomparedtheseresultsobtainedtraditionalceramicpotmethodTheincludednosee-nosetonguee-tonguechromatography-ionmobilityGC-IMShigh-performanceliquidchromatographyHPLCchromatography-massGC-MSautomatedacidtotal64primarilyaldehydesketonesestersalcoholsdetected23componentsidentifiedPrincipalcomponentPCAdemonstratedsimilartasteprofilestwomethodsAdditionally226nucleotidesenhancingumami18fattycategorizedsaturatedmonounsaturatedpolyunsaturatedgroupsPearsoncorrelationrevealedsignificantrelationshipsamong5'-nucleotidesprovidinginsightsindustrial-scaleapplicationsovensproductionVolatilecompoundAromaCombiCorrelationGinkgoTaste

Similar Articles

Cited By

No available data.