Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges.

Mark D Tarn, Kirsty J Shaw, Polly B Foster, Jon S West, Ian D Johnston, Daniel K McCluskey, Sally A Peyman, Benjamin J Murray
Author Information
  1. Mark D Tarn: School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. ORCID
  2. Kirsty J Shaw: Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom. ORCID
  3. Jon S West: Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom. ORCID
  4. Ian D Johnston: School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom. ORCID
  5. Daniel K McCluskey: School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom. ORCID
  6. Benjamin J Murray: School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. ORCID

Abstract

Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.

References

  1. Talanta. 2002 Feb 11;56(2):267-87 [PMID: 18968500]
  2. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19163-6 [PMID: 20962271]
  3. Environ Sci Process Impacts. 2019 Nov 1;21(11):1803-1815 [PMID: 31204421]
  4. Lab Chip. 2022 Feb 15;22(4):665-682 [PMID: 35107464]
  5. Genet Mol Res. 2016 Mar 04;15(1):15017863 [PMID: 26985943]
  6. Anal Chem. 2021 Jan 12;93(1):311-331 [PMID: 33170661]
  7. Anal Chim Acta. 2016 Mar 31;914:7-16 [PMID: 26965323]
  8. Lab Chip. 2009 Nov 7;9(21):3038-46 [PMID: 19823716]
  9. Plant Physiol. 1986 Apr;80(4):956-60 [PMID: 16664748]
  10. Biosensors (Basel). 2024 Jan 24;14(2): [PMID: 38391982]
  11. Anal Chim Acta. 2013 Jul 5;786:124-31 [PMID: 23790301]
  12. Environ Sci Technol. 2012 Sep 4;46(17):9548-56 [PMID: 22835223]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036302 [PMID: 22060487]
  14. Sensors (Basel). 2023 Jun 02;23(11): [PMID: 37300027]
  15. Environ Sci Technol Lett. 2020 Aug 11;7(8):532-543 [PMID: 34307722]
  16. Appl Microbiol. 1974 Sep;28(3):456-9 [PMID: 4371331]
  17. Nanoscale. 2021 Mar 4;13(8):4330-4358 [PMID: 33620368]
  18. Lab Chip. 2022 Mar 1;22(5):859-875 [PMID: 35170611]
  19. Phys Chem Chem Phys. 2010 Sep 21;12(35):10380-7 [PMID: 20577704]
  20. Lab Chip. 2013 Feb 7;13(3):365-76 [PMID: 23212283]
  21. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5797-803 [PMID: 26699469]
  22. Trends Biochem Sci. 1989 May;14(5):179-82 [PMID: 2672438]
  23. Biosensors (Basel). 2022 Nov 23;12(12): [PMID: 36551035]
  24. Mol Gen Genet. 1990 Aug;223(1):163-6 [PMID: 2259339]
  25. Chem Rev. 2017 Jun 28;117(12):7964-8040 [PMID: 28537383]
  26. Environ Sci Technol. 2019 Sep 17;53(18):10580-10590 [PMID: 31094516]
  27. Polymers (Basel). 2022 May 16;14(10): [PMID: 35631909]
  28. Lab Chip. 2011 Feb 7;11(3):490-6 [PMID: 21103534]
  29. Ann Appl Biol. 2015 Jan;166(1):4-17 [PMID: 25745191]
  30. ISME J. 2022 Mar;16(3):890-897 [PMID: 34689184]
  31. Sensors (Basel). 2022 Feb 18;22(4): [PMID: 35214519]
  32. Micromachines (Basel). 2023 Jul 31;14(8): [PMID: 37630070]
  33. Curr Microbiol. 2001 May;42(5):330-8 [PMID: 11400053]
  34. Sci Adv. 2021 Feb 24;7(9): [PMID: 33627419]
  35. FEMS Microbiol Ecol. 2005 Jun 1;53(1):103-15 [PMID: 16329933]
  36. Phys Chem Chem Phys. 2022 Nov 30;24(46):28213-28221 [PMID: 36413087]
  37. Int J Biol Sci. 2012;8(8):1097-108 [PMID: 22991498]
  38. Biomicrofluidics. 2018 Jul 02;12(4):041501 [PMID: 30867860]
  39. Science. 2008 Feb 29;319(5867):1214 [PMID: 18309078]
  40. FEBS Lett. 1989 Dec 4;258(2):297-300 [PMID: 2599095]
  41. Sci Adv. 2024 Jul 5;10(27):eadn6606 [PMID: 38959312]
  42. Lab Chip. 2020 Nov 7;20(21):3948-3959 [PMID: 32935710]
  43. Sci Adv. 2022 Nov 4;8(44):eabq6842 [PMID: 36322651]
  44. Cryobiology. 1990 Oct;27(5):492-510 [PMID: 2249453]
  45. Electrophoresis. 2023 Jan;44(1-2):268-297 [PMID: 36205631]
  46. Nat Biotechnol. 1998 Jun;16(6):576-80 [PMID: 9624691]
  47. Sensors (Basel). 2020 Mar 31;20(7): [PMID: 32244343]
  48. Anal Chem. 2019 Sep 3;91(17):11138-11145 [PMID: 31373198]
  49. Cryobiology. 2023 Dec;113:104584 [PMID: 37689130]
  50. J Am Chem Soc. 2018 Apr 11;140(14):4905-4912 [PMID: 29564892]
  51. Biosci Biotechnol Biochem. 1994 Dec;58(12):2273-4 [PMID: 7765722]
  52. Lab Chip. 2021 Jun 1;21(11):2232-2243 [PMID: 33903873]
  53. Micromachines (Basel). 2022 Sep 05;13(9): [PMID: 36144100]
  54. Analyst. 2018 Dec 17;144(1):68-86 [PMID: 30394455]
  55. Talanta. 2023 Jan 1;251:123815 [PMID: 35952505]
  56. Environ Sci Technol. 2017 Oct 3;51(19):11224-11234 [PMID: 28836763]
  57. Cryst Growth Des. 2019 Nov 6;19(11):6159-6174 [PMID: 31956300]
  58. Anal Chim Acta. 2013 Jul 25;788:52-60 [PMID: 23845481]
  59. Anal Chem. 2007 Jul 1;79(13):4845-51 [PMID: 17542555]
  60. Ann N Y Acad Sci. 2005 Dec;1066:12-33 [PMID: 16533916]
  61. Science. 1971 Jun 11;172(3988):1152-5 [PMID: 5574522]
  62. Anal Chem. 2014 Jun 17;86(12):5815-21 [PMID: 24857567]
  63. Plant Physiol. 1988 Nov;88(3):915-22 [PMID: 16666404]
  64. Lab Chip. 2016 Jun 21;16(12):2254-64 [PMID: 27185303]
  65. Anal Chim Acta. 2011 Feb 14;687(1):12-27 [PMID: 21241842]
  66. Mil Med Res. 2022 Mar 18;9(1):11 [PMID: 35300739]
  67. Lab Chip. 2020 Aug 21;20(16):2889-2910 [PMID: 32661539]
  68. Chem Soc Rev. 2014 Apr 7;43(7):2253-71 [PMID: 24336681]
  69. Lab Chip. 2019 Nov 21;19(22):3771-3775 [PMID: 31608915]
  70. Langmuir. 2024 Mar 26;40(12):6304-6316 [PMID: 38494636]
  71. J Bacteriol. 1986 Aug;167(2):496-502 [PMID: 3525514]
  72. Lab Chip. 2014 Dec 7;14(23):4533-9 [PMID: 25270338]
  73. Phys Chem Chem Phys. 2015 Feb 28;17(8):5514-37 [PMID: 25627933]
  74. Environ Sci Pollut Res Int. 2021 Dec;28(48):68006-68024 [PMID: 34648167]
  75. J Bacteriol. 1991 Jan;173(2):697-703 [PMID: 1987160]
  76. Microbiology (Reading). 2009 Apr;155(Pt 4):1164-1169 [PMID: 19332818]
  77. Plants (Basel). 2023 Apr 25;12(9): [PMID: 37176823]
  78. Anal Chem. 2018 Jan 16;90(2):1209-1216 [PMID: 29226671]
  79. Sci Adv. 2023 Aug 18;9(33):eadg3708 [PMID: 37585539]
  80. Trends Analyt Chem. 2023 Jan;158:116880 [PMID: 36514783]
  81. Anal Bioanal Chem. 2008 Jan;390(1):89-111 [PMID: 17989961]
  82. Sci Rep. 2022 Jul 19;12(1):12295 [PMID: 35854036]
  83. Annu Rev Biochem. 2016 Jun 2;85:515-42 [PMID: 27145844]
  84. Environ Int. 2021 Jan;146:106197 [PMID: 33271442]
  85. Microsyst Nanoeng. 2022 Apr 29;8:46 [PMID: 35498338]
  86. Annu Rev Phytopathol. 2013;51:85-104 [PMID: 23663005]
  87. Analyst. 2012 Jan 7;137(1):24-34 [PMID: 22005445]
  88. Faraday Discuss. 2022 Jul 14;235(0):148-161 [PMID: 35388827]
  89. Elife. 2023 Dec 18;12: [PMID: 38109272]
  90. Anal Chem. 2016 Jan 5;88(1):320-38 [PMID: 26599485]
  91. Cryst Growth Des. 2007;7(11):2192-2194 [PMID: 19590751]
  92. Microsyst Nanoeng. 2019 Jun 3;5:32 [PMID: 31231539]
  93. Micromachines (Basel). 2023 Jan 11;14(1): [PMID: 36677244]
  94. J Bacteriol. 1990 Jun;172(6):3519-23 [PMID: 2188965]
  95. Sci Rep. 2016 Sep 06;6:32930 [PMID: 27596247]
  96. J Geophys Res Atmos. 2022 Mar 27;127(6):e2021JD036059 [PMID: 35865411]
  97. Plant Physiol. 1982 Oct;70(4):1084-9 [PMID: 16662618]
  98. Anal Bioanal Chem. 2014 Jan;406(1):139-61 [PMID: 24150283]
  99. Lab Chip. 2007 Dec;7(12):1644-59 [PMID: 18030382]
  100. Lab Chip. 2016 Jan 7;16(1):10-34 [PMID: 26584257]
  101. Lab Chip. 2018 Aug 21;18(17):2642-2652 [PMID: 30069567]
  102. Micromachines (Basel). 2022 Feb 02;13(2): [PMID: 35208376]
  103. Lab Chip. 2006 Jan;6(1):137-44 [PMID: 16372081]
  104. Science. 1998 May 15;280(5366):1046-8 [PMID: 9582111]
  105. Lab Chip. 2020 May 19;20(10):1705-1712 [PMID: 32338272]
  106. Lab Chip. 2017 Feb 28;17(5):751-771 [PMID: 28197601]
  107. Lab Chip. 2013 May 7;13(9):1695-8 [PMID: 23474861]
  108. Lab Chip. 2012 Apr 7;12(7):1210-23 [PMID: 22362021]
  109. Sci Rep. 2015 Jan 28;5:8082 [PMID: 25626414]
  110. Lab Chip. 2024 Feb 27;24(5):1135-1153 [PMID: 38165829]
  111. Anal Chem. 2021 Jul 6;93(26):9013-9022 [PMID: 34160193]
  112. Analyst. 2021 Sep 27;146(19):5800-5821 [PMID: 34570846]
  113. Anal Methods. 2021 Dec 24;14(1):22-33 [PMID: 34874983]
  114. Lab Chip. 2009 Jan 21;9(2):331-8 [PMID: 19107293]
  115. Sci Rep. 2017 Jan 03;7:39673 [PMID: 28045124]
  116. Chem Soc Rev. 2013 Jul 7;42(13):5880-906 [PMID: 23624774]
  117. Appl Environ Microbiol. 2014 Feb;80(4):1256-67 [PMID: 24317082]
  118. Anal Biochem. 1986 May 1;154(2):682-90 [PMID: 3524313]
  119. Int J Environ Res Public Health. 2021 Jun 25;18(13): [PMID: 34202035]
  120. Science. 1969 Mar 7;163(3871):1073-5 [PMID: 5764871]
  121. PLoS One. 2013 Apr 26;8(4):e62961 [PMID: 23658657]
  122. Anal Chem. 2016 May 3;88(9):4651-60 [PMID: 26898247]
  123. Particuology. 2021 Apr;55:23-34 [PMID: 38620251]
  124. Lab Chip. 2008 Nov;8(11):1837-41 [PMID: 18941682]
  125. Lab Chip. 2007 May;7(5):618-25 [PMID: 17476381]
  126. Cryobiology. 2018 Oct;84:91-94 [PMID: 30144407]
  127. Electrophoresis. 2023 Jun;44(11-12):910-937 [PMID: 37061854]
  128. J Chem Phys. 2023 Apr 21;158(15): [PMID: 37093996]
  129. Gene. 1989 Dec 21;85(1):239-42 [PMID: 2515997]
  130. Biogeosciences. 2023;20(13):2805-2812 [PMID: 38818347]
  131. Biosci Biotechnol Biochem. 2003 Sep;67(9):1950-8 [PMID: 14519981]
  132. Lab Chip. 2015 Jun 7;15(11):2364-78 [PMID: 25906246]
  133. Lab Chip. 2010 Jul 21;10(14):1873-7 [PMID: 20467690]
  134. J Bacteriol. 1988 Feb;170(2):669-75 [PMID: 3123461]
  135. Microfluid Nanofluidics. 2018;22(5):52 [PMID: 29720926]
  136. J Phys Chem Lett. 2019 Mar 7;10(5):966-972 [PMID: 30742446]
  137. Cryobiology. 2014 Aug;69(1):110-8 [PMID: 24930584]
  138. Mol Biol Evol. 1994 Nov;11(6):911-20 [PMID: 7815929]
  139. Science. 2004 May 14;304(5673):987-90 [PMID: 15143275]
  140. J Phys Chem A. 2016 Aug 25;120(33):6513-20 [PMID: 27410458]
  141. Water Sci Technol. 2010;61(7):1811-8 [PMID: 20371940]
  142. Lab Chip. 2008 Nov;8(11):1950-6 [PMID: 18941698]
  143. Micromachines (Basel). 2020 Jun 25;11(6): [PMID: 32630555]
  144. Chem Sci. 2020 Sep 10;11(38):10506-10516 [PMID: 34094309]
  145. J Biomol Tech. 2010 Dec;21(4):167-93 [PMID: 21119929]
  146. Langmuir. 2019 Jan 15;35(2):359-364 [PMID: 30509075]
  147. ACS Sens. 2017 Apr 28;2(4):513-521 [PMID: 28723191]
  148. Nature. 2013 Jun 20;498(7454):355-8 [PMID: 23760484]
  149. Phys Rev Lett. 2017 Feb 24;118(8):084101 [PMID: 28282160]
  150. Sens Actuators B Chem. 2013 Jan 1;176:653-659 [PMID: 24723743]
  151. Biomicrofluidics. 2009 Jan 02;3(1):12005 [PMID: 19693386]
  152. Biomolecules. 2019 Sep 25;9(10): [PMID: 31557956]
  153. Electrophoresis. 2023 Jan;44(1-2):217-245 [PMID: 35977346]
  154. Lab Chip. 2017 Jun 27;17(13):2167-2185 [PMID: 28585942]
  155. Micromachines (Basel). 2019 Jul 18;10(7): [PMID: 31323826]
  156. Trends Microbiol. 2008 Aug;16(8):380-7 [PMID: 18595713]
  157. Sci Adv. 2023 Sep 15;9(37):eadg3715 [PMID: 37713488]
  158. Angew Chem Int Ed Engl. 2017 Sep 18;56(39):11885-11890 [PMID: 28767197]
  159. Lab Chip. 2003 Aug;3(3):187-92 [PMID: 15100772]
  160. Mol Plant Microbe Interact. 1989 Sep-Oct;2(5):262-72 [PMID: 2520825]
  161. Front Microbiol. 2018 Aug 15;9:1667 [PMID: 30158903]
  162. J Nanobiotechnology. 2021 Oct 11;19(1):312 [PMID: 34635104]
  163. Smart Med. 2022 Dec 22;1(1):e20220001 [PMID: 39188737]
  164. Lab Chip. 2012 Oct 21;12(20):4029-32 [PMID: 22930333]
  165. Sci Adv. 2019 Feb 01;5(2):eaav4316 [PMID: 30746490]
  166. Expert Rev Mol Diagn. 2011 Sep;11(7):711-20 [PMID: 21902533]
  167. Nat Biotechnol. 2021 Nov;39(11):1348-1365 [PMID: 34750572]
  168. Anal Chem. 2009 Mar 15;81(6):2399-402 [PMID: 19209912]
  169. Lab Chip. 2009 Jul 7;9(13):1859-65 [PMID: 19532960]
  170. Micromachines (Basel). 2021 Jul 05;12(7): [PMID: 34357208]
  171. Front Bioeng Biotechnol. 2022 Dec 23;10:1112327 [PMID: 36619380]
  172. Anal Bioanal Chem. 2009 May;394(1):187-98 [PMID: 19290514]
  173. Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2687-2692 [PMID: 29490918]
  174. Nature. 1976 Jul 22;262(5566):285-7 [PMID: 958371]
  175. Sensors (Basel). 2017 Apr 13;17(4): [PMID: 28406447]
  176. Sci Rep. 2017 Feb 03;7:41890 [PMID: 28157236]
  177. Micromachines (Basel). 2021 Feb 23;12(2): [PMID: 33672200]
  178. Phys Rev Lett. 2001 Apr 30;86(18):4163-6 [PMID: 11328121]
  179. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18854-9 [PMID: 19028877]
  180. Biosensors (Basel). 2024 May 04;14(5): [PMID: 38785702]
  181. Lab Chip. 2014 Nov 7;14(21):4139-58 [PMID: 25212386]
  182. Lab Chip. 2024 Feb 27;24(5):1394-1418 [PMID: 38344937]
  183. Front Microbiol. 2022 Jun 17;13:872306 [PMID: 35783412]
  184. Sci Rep. 2020 Apr 24;10(1):6925 [PMID: 32332774]
  185. Cryobiology. 1999 Mar;38(2):131-9 [PMID: 10191036]
  186. ACS Omega. 2024 Jan 26;9(5):5751-5760 [PMID: 38343940]
  187. Phys Chem Chem Phys. 2013 Apr 28;15(16):5873-87 [PMID: 23486888]
  188. J Chem Phys. 2016 Dec 7;145(21):211923 [PMID: 28799359]
  189. Lab Chip. 2019 Apr 9;19(8):1471-1483 [PMID: 30896011]
  190. Med Microbiol Immunol. 2020 Jun;209(3):343-362 [PMID: 32246198]
  191. J Phys Chem B. 2017 Jan 12;121(1):306-313 [PMID: 27960260]
  192. Lab Chip. 2020 Oct 27;20(21):3876-3887 [PMID: 32966480]
  193. Electrophoresis. 2008 Dec;29(24):4813-51 [PMID: 19130566]
  194. FEMS Microbiol Ecol. 2007 Feb;59(2):242-54 [PMID: 17328765]
  195. Anal Chem. 2002 Jun 15;74(12):2623-36 [PMID: 12090653]
  196. Sci Rep. 2018 Sep 14;8(1):13821 [PMID: 30217983]
  197. Environ Sci Technol. 2011 Sep 1;45(17):7473-80 [PMID: 21780777]
  198. Nat Rev Genet. 2022 Aug;23(8):467-491 [PMID: 35338360]
  199. Phys Chem Chem Phys. 2009 Sep 28;11(36):8056-68 [PMID: 19727513]
  200. Lab Chip. 2015 Apr 21;15(8):1889-97 [PMID: 25714231]
  201. Cryobiology. 2020 Apr;93:62-69 [PMID: 32092295]
  202. Lab Chip. 2008 Oct;8(10):1632-9 [PMID: 18813384]
  203. J Vis Exp. 2013 Feb 04;(72):e4189 [PMID: 23407403]
  204. ISME J. 2017 Dec;11(12):2740-2753 [PMID: 28753208]
  205. Anal Chem. 2020 Jan 7;92(1):132-149 [PMID: 31769655]
  206. Appl Environ Microbiol. 1992 Sep;58(9):2960-4 [PMID: 16348770]
  207. Diagnostics (Basel). 2013 Jan 15;3(1):33-67 [PMID: 26835667]
  208. Biosens Bioelectron. 2021 Nov 15;192:113499 [PMID: 34311208]
  209. Analyst. 2021 Nov 22;146(23):7070-7086 [PMID: 34761757]
  210. Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2303243120 [PMID: 37943838]
  211. Chem Soc Rev. 2010 Mar;39(3):1203-17 [PMID: 20179832]
  212. Glob Chang Biol. 2014 Feb;20(2):341-51 [PMID: 24399753]
  213. Anal Chem. 2017 Nov 21;89(22):12231-12236 [PMID: 29083863]
  214. Anal Chem. 2013 May 21;85(10):5255-62 [PMID: 23590462]
  215. Anal Chim Acta. 2017 May 1;965:9-35 [PMID: 28366216]
  216. Anal Chim Acta. 2016 Oct 19;941:101-107 [PMID: 27692374]
  217. J R Soc Interface. 2023 Feb;20(199):20220682 [PMID: 36751925]
  218. Nat Commun. 2023 Sep 28;14(1):5997 [PMID: 37770489]
  219. Chem Soc Rev. 2012 Oct 7;41(19):6519-54 [PMID: 22932664]
  220. ACS Nano. 2013 Jul 23;7(7):5955-64 [PMID: 23805985]
  221. Micromachines (Basel). 2019 Jul 26;10(8): [PMID: 31357448]
  222. Biosensors (Basel). 2022 Jun 16;12(6): [PMID: 35735569]
  223. Micromachines (Basel). 2021 Mar 11;12(3): [PMID: 33799595]
  224. Anal Chem. 2009 Jan 1;81(1):302-6 [PMID: 19055421]
  225. Annu Rev Phys Chem. 2021 Apr 20;72:73-97 [PMID: 33607917]
  226. Lab Chip. 2009 Jan 7;9(1):44-9 [PMID: 19209334]
  227. ACS Nano. 2020 Sep 22;14(9):10784-10795 [PMID: 32844655]
  228. FEBS Lett. 1997 Sep 15;414(3):590-4 [PMID: 9323042]
  229. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12814-9 [PMID: 19617562]
  230. J Chem Phys. 2016 Dec 7;145(21):211915 [PMID: 28799369]
  231. Biotechnol Adv. 2017 Mar - Apr;35(2):323-336 [PMID: 28153517]
  232. PLoS One. 2014 Sep 03;9(9):e105547 [PMID: 25184292]
  233. Plant Physiol. 1994 Feb;104(2):725-735 [PMID: 12232122]
  234. Microsyst Nanoeng. 2023 Mar 9;9:24 [PMID: 36910256]
  235. Curr Opin Chem Biol. 2012 Aug;16(3-4):436-43 [PMID: 22682892]
  236. Biomicrofluidics. 2019 Sep 17;13(5):054103 [PMID: 31558921]
  237. Biosensors (Basel). 2022 Mar 24;12(4): [PMID: 35448251]
  238. Anal Chem. 2015 Jun 16;87(12):5997-6003 [PMID: 26035024]
  239. Lab Chip. 2012 Jul 21;12(14):2520-5 [PMID: 22555411]
  240. Phys Chem Chem Phys. 2011 Nov 28;13(44):19882-94 [PMID: 21912788]
  241. J Phys Chem B. 2022 Mar 10;126(9):1861-1867 [PMID: 35084861]
  242. NPJ Clim Atmos Sci. 2020 Feb;3(1):2 [PMID: 32754650]
  243. Biomed Microdevices. 2024 Jun 3;26(3):28 [PMID: 38825594]
  244. Lab Chip. 2015 Feb 21;15(4):959-70 [PMID: 25537573]
  245. J Healthc Eng. 2021 Jul 15;2021:2959843 [PMID: 34326976]
  246. Biosens Bioelectron. 2019 Mar 1;128:52-60 [PMID: 30634074]
  247. ACS Earth Space Chem. 2023 Apr 27;7(6):1207-1218 [PMID: 38357474]
  248. Lab Chip. 2022 Sep 13;22(18):3475-3488 [PMID: 35943442]
  249. ACS Sens. 2020 Sep 25;5(9):2763-2771 [PMID: 32493010]
  250. Environ Sci Technol. 2019 Feb 5;53(3):1139-1149 [PMID: 30589542]
  251. Anal Chim Acta. 2021 Nov 22;1186:338392 [PMID: 34756264]
  252. Biosens Bioelectron. 2020 Dec 1;169:112611 [PMID: 32977088]
  253. Soft Matter. 2022 Dec 21;19(1):69-79 [PMID: 36468540]
  254. Lab Chip. 2023 Mar 1;23(5):1258-1278 [PMID: 36752545]
  255. Anal Chem. 2009 Dec 15;81(24):10029-37 [PMID: 19904999]
  256. J Phys Chem B. 2018 Apr 5;122(13):3480-3490 [PMID: 29356536]
  257. Lab Chip. 2009 Aug 21;9(16):2293-305 [PMID: 19636459]
  258. Small. 2017 Nov;13(41): [PMID: 28873281]
  259. J Phys Chem B. 2011 Feb 10;115(5):1089-97 [PMID: 21174462]
  260. Science. 2002 Jan 25;295(5555):647-51 [PMID: 11809963]
  261. Sci Rep. 2015 Nov 02;5:15983 [PMID: 26522006]
  262. Pathogens. 2024 Apr 17;13(4): [PMID: 38668285]
  263. Colloids Surf B Biointerfaces. 2021 Oct;206:111962 [PMID: 34352699]
  264. Nucleic Acids Res. 1986 Oct 24;14(20):8047-60 [PMID: 3774551]
  265. Nature. 2015 Sep 10;525(7568):234-8 [PMID: 26354482]
  266. Anal Chem. 2018 May 1;90(9):5512-5520 [PMID: 29595252]
  267. J Appl Microbiol. 2019 Dec;127(6):1596-1611 [PMID: 30974505]
  268. Lab Chip. 2014 Jan 7;14(1):244-51 [PMID: 24216775]
  269. Biosci Biotechnol Biochem. 1994 Apr;58(4):762-4 [PMID: 7764866]
  270. Lab Chip. 2022 Aug 23;22(17):3110-3121 [PMID: 35674283]
  271. Front Microbiol. 2018 Nov 12;9:2681 [PMID: 30483227]
  272. Cryobiology. 2016 Jun;72(3):239-43 [PMID: 27056262]
  273. Environ Sci Technol. 2022 Jan 18;56(2):711-731 [PMID: 34985862]
  274. Biosensors (Basel). 2021 Nov 18;11(11): [PMID: 34821680]
  275. Lab Chip. 2012 Feb 7;12(3):422-33 [PMID: 22011791]
  276. Comp Biochem Physiol A Mol Integr Physiol. 2010 May;156(1):151-5 [PMID: 20116441]
  277. Analyst. 2016 Mar 7;141(5):1637-40 [PMID: 26854120]
  278. Appl Environ Microbiol. 1988 Jul;54(7):1678-81 [PMID: 16347678]
  279. Biosens Bioelectron. 2021 Apr 1;177:112952 [PMID: 33453463]
  280. Nat Commun. 2022 Aug 26;13(1):5019 [PMID: 36028506]
  281. Cryo Letters. 2013 Mar-Apr;34(2):137-48 [PMID: 23625082]
  282. Lab Chip. 2009 Sep 21;9(18):2722-8 [PMID: 19704989]
  283. Anal Chem. 2016 Dec 6;88(23):11504-11512 [PMID: 27934096]
  284. Lab Chip. 2024 Feb 27;24(5):1175-1206 [PMID: 38165815]
  285. Sci Rep. 2020 Sep 30;10(1):16085 [PMID: 32999324]
  286. Sci Rep. 2019 Mar 7;9(1):3832 [PMID: 30846713]
  287. Langmuir. 2016 Sep 13;32(36):9229-36 [PMID: 27495973]

Word Cloud

Created with Highcharts 10.0.0INPsfreezinganalysisice-nucleatingbiologicalsamplingatmosphericwaterdropletsglobalactivitydevelopmentautomatedyearsdroplettechniquesfieldchallengesAtmosphericparticlesmakevanishinglysmallproportionaerosolkeytriggeringsupercooledliquidalteringlifetimeradiativepropertiescloudssubstantialimpactweatherclimateHowevernotoriouslydifficultmodelduelackinformationsourcessinksconcentrationsnecessitatingnewinstrumentationquantifyingcharacterizingrapidmannerMicrofluidictechnologyincreasinglyadoptedicenucleationresearchgroupsrecentmeansperformingenablingmeasurementhundredsthousandsperexperimenttemperatureshomogeneouspotentialmicrofluidicsextendsfarbeyondentiretoolboxbioanalyticalseparationdetectiondeveloped30medicalapplicationsmethodseasilyadaptedbiogenicINPrevolutionizeexampleidentificationquantificationbacteriafungiCombinedminiaturizedcanenvisagedeploymentmicrofluidicsample-to-answerplatformsuser-friendlyenablegreaterunderstandingseasonalreviewvariouscomponentsplatformincorporatehighlightfeasibilityendeavorassaysseparationsbioanalysisMicrofluidicsparticles:Perspectives

Similar Articles

Cited By