Basic verification of myocardial extracellular volume quantification by prototype photon-counting detector computed tomography: A phantom study.

Seitaro Oda, Yoshinori Funama, Shinichi Kojima, Kazuma Yokoi, Isao Takahashi, Yuko Aoki, Taiga Goto, Kana Tanaka, Fuyuhiko Teramoto, Masafumi Kidoh, Yasunori Nagayama, Takeshi Nakaura, Toshinori Hirai
Author Information
  1. Seitaro Oda: Departments of Diagnostic Radiology, Kumamoto University, Kumamoto, Japan.
  2. Yoshinori Funama: Medical Image Analysis, Kumamoto University, Kumamoto, Japan.
  3. Shinichi Kojima: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan.
  4. Kazuma Yokoi: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan.
  5. Isao Takahashi: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan.
  6. Yuko Aoki: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan.
  7. Taiga Goto: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan. ORCID
  8. Kana Tanaka: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan.
  9. Fuyuhiko Teramoto: Medical Systems Research and Development Center, FUJIFILM Corporation, Tokyo, Japan.
  10. Masafumi Kidoh: Departments of Diagnostic Radiology, Kumamoto University, Kumamoto, Japan.
  11. Yasunori Nagayama: Departments of Diagnostic Radiology, Kumamoto University, Kumamoto, Japan.
  12. Takeshi Nakaura: Departments of Diagnostic Radiology, Kumamoto University, Kumamoto, Japan.
  13. Toshinori Hirai: Departments of Diagnostic Radiology, Kumamoto University, Kumamoto, Japan.

Abstract

Objectives: This study aimed to investigate the accuracy of myocardial extracellular volume (ECV) quantification using a prototype photon-counting detector (PCD) computed tomography (CT) and examine the association between radiation dose and spectral image settings.
Material and Methods: A multi-energy CT phantom that simulated the blood pool and myocardium was used. The tube voltage was set at 120 kVp and three types of tube current-time products (105, 150, and 300 mAs) were applied for pre- and post-contrast scans. Virtual monoenergetic images (VMIs) at 50-100 keV were reconstructed. The ECV value was calculated from the CT numbers between pre-contrast and post-contrast. We compared the accuracy of ECV values at each VMI level.
Results: Each radiation dose setting demonstrated a small but significant difference in ECV values at each keV level. ECV was overestimated at higher keV in all radiation dose settings. A significant difference in ECV value variabilities was found among keV levels in all three radiation dose settings, with higher keV exhibiting greater variability. The variation was particularly large in the low-dose setting. The residual values were significantly larger at higher keV levels in all radiation dose settings. The residual values were smaller at 50 and 60 keV with no significant difference in 150- and 300-mAs settings.
Conclusion: Setting appropriate VMI keV and radiation dose settings was necessary when quantifying myocardial ECV with PCD-CT because the keV levels caused differences in the quantification value and measurement variation.

Keywords

References

  1. Radiology. 2022 May;303(2):303-313 [PMID: 35166583]
  2. J Thorac Imaging. 2021 Mar 1;36(2):84-94 [PMID: 33399350]
  3. Eur Radiol. 2023 Dec;33(12):8464-8476 [PMID: 37378712]
  4. J Cardiovasc Comput Tomogr. 2019 Jan - Feb;13(1):1-20 [PMID: 30630686]
  5. Eur Radiol. 2023 Aug;33(8):5309-5320 [PMID: 37020069]
  6. Radiology. 2012 Sep;264(3):876-83 [PMID: 22771879]
  7. J Cardiovasc Comput Tomogr. 2020 Mar - Apr;14(2):162-167 [PMID: 31615736]
  8. J Cardiovasc Comput Tomogr. 2024 Jan-Feb;18(1):3-10 [PMID: 38218665]
  9. Invest Radiol. 2022 Jun 1;57(6):406-411 [PMID: 35066531]
  10. JACC Cardiovasc Imaging. 2021 Dec;14(12):2457-2469 [PMID: 34023250]
  11. Radiology. 2016 Jul;280(1):49-57 [PMID: 27322972]
  12. Radiol Cardiothorac Imaging. 2019 Apr 25;1(1):e180003 [PMID: 33778497]
  13. Radiology. 2022 Apr;303(1):130-138 [PMID: 34904876]
  14. Eur Heart J Cardiovasc Imaging. 2019 Feb 1;20(2):168-176 [PMID: 30325426]
  15. Radiology. 2013 Nov;269(2):396-403 [PMID: 23878282]
  16. J Am Coll Cardiol. 2011 Feb 22;57(8):891-903 [PMID: 21329834]
  17. Acta Radiol. 2022 Feb;63(2):159-165 [PMID: 33461303]
  18. J Clin Med. 2023 May 23;12(11): [PMID: 37297822]
  19. J Cardiovasc Comput Tomogr. 2021 May-Jun;15(3):218-225 [PMID: 33358186]
  20. J Cardiovasc Magn Reson. 2017 Oct 9;19(1):75 [PMID: 28992817]
  21. Radiology. 2015 Feb;274(2):370-8 [PMID: 25247406]
  22. Prog Cardiovasc Dis. 2022 Nov-Dec;75:12-20 [PMID: 36336026]
  23. Circ J. 2015;79(3):487-94 [PMID: 25746524]
  24. Eur J Radiol. 2018 Dec;109:235-247 [PMID: 30539759]
  25. JACC Cardiovasc Imaging. 2023 Oct;16(10):1306-1317 [PMID: 37269267]
  26. Radiology. 2023 Apr;307(2):e222030 [PMID: 36719292]
  27. JAMA. 2013 Mar 6;309(9):896-908 [PMID: 23462786]
  28. Radiology. 2018 Nov;289(2):293-312 [PMID: 30179101]
  29. Radiology. 2023 Mar;306(3):e221257 [PMID: 36719287]

Word Cloud

Created with Highcharts 10.0.0keVECVradiationdosesettingsvaluesstudymyocardialextracellularvolumequantificationdetectorcomputedCTvaluesignificantdifferencehigherlevelsaccuracyprototypephoton-countingtomographyphantomtubethreepost-contrastVirtualmonoenergeticVMIlevelsettingvariationresidualObjectives:aimedinvestigateusingPCDexamineassociationspectralimageMaterialMethods:multi-energysimulatedbloodpoolmyocardiumusedvoltageset120kVptypescurrent-timeproducts105150300mAsappliedpre-scansimagesVMIs50-100reconstructedcalculatednumberspre-contrastcomparedResults:demonstratedsmalloverestimatedvariabilitiesfoundamongexhibitinggreatervariabilityparticularlylargelow-dosesignificantlylargersmaller5060150-300-mAsConclusion:SettingappropriatenecessaryquantifyingPCD-CTcauseddifferencesmeasurementBasicverificationtomography:MyocardialPhantomPhoton-countingimaging

Similar Articles

Cited By