Isokinetic Strength Profiles Among Youth after Medial Patellofemoral Ligament Reconstruction.

Christin M Zwolski, Grant R Poston, Laine A Anthony, Kristin L Bastian, Megan M Sayre, Kathleen M Hugentobler, Alyson R Filipa
Author Information
  1. Christin M Zwolski: Division of Occupational Therapy and Physical Therapy Cincinnati Children's Hospital Medical Center.
  2. Grant R Poston: Division of Occupational Therapy and Physical Therapy Cincinnati Children's Hospital Medical Center.
  3. Laine A Anthony: Physical Therapy Division Duke University School of Medicine.
  4. Kristin L Bastian: Division of Occupational Therapy and Physical Therapy Cincinnati Children's Hospital Medical Center.
  5. Megan M Sayre: Division of Occupational Therapy and Physical Therapy Cincinnati Children's Hospital Medical Center.
  6. Kathleen M Hugentobler: Division of Occupational Therapy and Physical Therapy Cincinnati Children's Hospital Medical Center.
  7. Alyson R Filipa: Division of Occupational Therapy and Physical Therapy Cincinnati Children's Hospital Medical Center.

Abstract

Background: Knee strength is a critical measure of successful rehabilitation following medial patellofemoral ligament reconstruction (MPFLR). Yet, strength outcomes of youth following MPFLR are not widely reported.
Hypothesis/Purpose: The primary purpose was to profile isokinetic strength outcomes by sex and age among youth following MPFLR. A secondary purpose was to determine the relationship between normalized isokinetic strength values and patient-reported outcome scores by age and sex. The hypotheses were that 1) males would demonstrate higher normalized strength, and that 2) a higher proportion of males would achieve ≥90% limb symmetry when compared to females.
Study Design: Cross-sectional.
Methods: At 6.9±2.1 months after MPFLR, 162 patients completed isokinetic assessment of knee extension (KE) and flexion (KF) strength at 180°/s and 300°/s on both limbs (uninvolved [UN], involved [INV]). Strength data and patient-reported outcome scores, including the International Knee Documentation Committee (IKDC) Subjective Knee Form and Pediatric Quality of Life Inventory (PedsQL) were extracted from electronic medical records. Descriptive statistics were used to categorize data by age (Pre-adolescent, Early Adolescent, Late Adolescent, Young Adult) and sex. Independent-samples t-tests and chi-square analyses were used to determine sex-based differences in strength. Multiple linear regression analyses were used to determine the relationship between strength and patient-reported function.
Results: Among Early Adolescents, males demonstrated higher normalized KE strength at 300°/s compared to females (UN: 1.27±0.3 vs. 1.07±0.3 [p=0.01]; INV: 1.07±0.2 vs. 0.92±0.3 [p=0.03]). Among Late Adolescents, males demonstrated higher INV limb strength for KE 180°/s (1.55±0.53 vs. 1.24±0.5; p=0.02), KE 300°/s (1.25±0.4 vs. 1.00±0.4; p=0.01), and KF 180°/s (0.98±0.4 vs. 0.82±0.3; p=0.05). A higher proportion of Late Adolescent and Young Adult males achieved ≥90% LSI compared to females (p=<0.01-0.04). Regression models estimating IKDC and PedsQL scores were significant with INV KE strength as an independent variable (p=0.01-0.03).
Conclusions: Males demonstrated higher normalized strength and symmetry compared to females following MPFLR. Higher INV KE strength was associated with higher patient-reported function.
Level of Evidence: 2b.

Keywords

References

  1. Clin Sports Med. 2022 Oct;41(4):687-705 [PMID: 36210166]
  2. Am J Sports Med. 2022 Feb;50(2):441-450 [PMID: 34889652]
  3. Children (Basel). 2022 Dec 02;9(12): [PMID: 36553335]
  4. Am J Sports Med. 2019 May;47(6):1516-1524 [PMID: 29630397]
  5. Arthrosc Sports Med Rehabil. 2024 Jan 24;6(3):100897 [PMID: 39006798]
  6. J Orthop Surg Res. 2023 May 30;18(1):393 [PMID: 37254200]
  7. J Athl Train. 2003 Sep;38(3):231-237 [PMID: 14608433]
  8. J Child Orthop. 2022 Oct;16(5):393-400 [PMID: 36238149]
  9. Knee Surg Sports Traumatol Arthrosc. 2018 Apr;26(4):1037-1043 [PMID: 28299386]
  10. Am J Sports Med. 2001 Sep-Oct;29(5):600-13 [PMID: 11573919]
  11. J Orthop Sports Phys Ther. 2017 May;47(5):334-338 [PMID: 28355978]
  12. Knee Surg Sports Traumatol Arthrosc. 2022 Jun;30(6):1865-1870 [PMID: 34846539]
  13. Orthop J Sports Med. 2019 Mar 01;7(3):2325967119828953 [PMID: 30854403]
  14. Expert Rev Pharmacoecon Outcomes Res. 2005 Dec;5(6):705-19 [PMID: 19807613]
  15. Curr Rev Musculoskelet Med. 2018 Jun;11(2):280-284 [PMID: 29750318]
  16. J Knee Surg. 2021 Jul;34(8):906-912 [PMID: 31905414]
  17. Pediatrics. 2020 Jun;145(6): [PMID: 32457216]
  18. Wien Klin Wochenschr. 2019 Dec;131(23-24):614-619 [PMID: 31712883]
  19. Sports Health. 2015 Mar;7(2):115-23 [PMID: 25984256]
  20. Orthop J Sports Med. 2019 Feb 15;7(2):2325967119825854 [PMID: 30800696]
  21. Knee Surg Sports Traumatol Arthrosc. 2017 Mar;25(3):949-957 [PMID: 26149462]
  22. J Orthop Sports Phys Ther. 2017 Nov;47(11):825-833 [PMID: 28990491]
  23. Arthroscopy. 2010 Oct;26(10):1384-94 [PMID: 20887937]
  24. Phys Sportsmed. 2016;44(2):133-40 [PMID: 26837237]
  25. Sports Health. 2019 Jul/Aug;11(4):324-331 [PMID: 31173697]
  26. Am J Sports Med. 2022 Jan;50(1):282-291 [PMID: 33720789]
  27. Knee Surg Sports Traumatol Arthrosc. 2014 Oct;22(10):2438-44 [PMID: 24584694]
  28. J Orthop Surg Res. 2022 Sep 14;17(1):416 [PMID: 36104806]
  29. Medicine (Baltimore). 2018 Dec;97(50):e13605 [PMID: 30558034]
  30. Am J Sports Med. 2015 Sep;43(9):2242-9 [PMID: 26183172]
  31. J Child Orthop. 2021 Dec 01;15(6):571-576 [PMID: 34987667]
  32. Med Care. 1999 Feb;37(2):126-39 [PMID: 10024117]
  33. Phys Ther Sport. 2021 Sep;51:102-109 [PMID: 34311174]
  34. J Orthop Sports Phys Ther. 2017 Nov;47(11):A1-A47 [PMID: 29089004]
  35. Am J Sports Med. 2007 Aug;35(8):1269-75 [PMID: 17244901]
  36. Knee Surg Sports Traumatol Arthrosc. 2014 Oct;22(10):2320-6 [PMID: 25047793]
  37. Med Sci Sports Exerc. 2008 Apr;40(4):606-11 [PMID: 18317388]
  38. Am J Sports Med. 2010 Dec;38(12):2443-7 [PMID: 20805408]
  39. Am J Sports Med. 2018 Aug;46(10):2530-2539 [PMID: 28678520]
  40. Am J Sports Med. 2022 Oct;50(12):3280-3285 [PMID: 35993482]
  41. Knee Surg Sports Traumatol Arthrosc. 2018 Mar;26(3):711-718 [PMID: 28028569]
  42. J Pediatr Orthop. 2021 Feb 1;41(2):e141-e146 [PMID: 33165267]
  43. Am J Sports Med. 2015 Nov;43(11):2727-37 [PMID: 26359376]
  44. Am J Sports Med. 2015 Jul;43(7):1662-9 [PMID: 25883169]
  45. Am J Sports Med. 2018 Aug;46(10):2328-2340 [PMID: 29847145]
  46. Am J Sports Med. 2000 Mar-Apr;28(2):234-40 [PMID: 10751001]
  47. JAMA Pediatr. 2014 Dec;168(12):1114-21 [PMID: 25347549]

Word Cloud

Created with Highcharts 10.0.0strengthhigher1KEMPFLRpatient-reportedmalesvsfollowingnormalizedcomparedfemales3p=0Kneeoutcomesyouthisokineticsexagedeterminescores180°/s300°/susedAdolescentLateAmongdemonstrated 1INV4patellofemoralligamentpurposerelationshipoutcome2proportion≥90%limbsymmetryKFStrengthdataIKDCPedsQLEarlyYoungAdultanalysesfunctionAdolescents07±0[p=0 001-0MedialBackground:criticalmeasuresuccessfulrehabilitationmedialreconstructionYetwidelyreportedHypothesis/Purpose:primaryprofileamongsecondaryvalueshypothesesdemonstrateachieveStudyDesign:Cross-sectionalMethods:69±2months162patientscompletedassessmentkneeextensionflexionlimbsuninvolved[UN]involved[INV]includingInternationalDocumentationCommitteeSubjectiveFormPediatricQualityLifeInventoryextractedelectronicmedicalrecordsDescriptivestatisticscategorizePre-adolescentIndependent-samplest-testschi-squaresex-baseddifferencesMultiplelinearregressionResults:UN:27±001]INV:92±003]55±05324±050225±000±001098±082±005achievedLSIp=<004Regressionmodelsestimatingsignificantindependentvariable03Conclusions:MalesHigherassociatedLevelEvidence:2bIsokineticProfilesYouthPatellofemoralLigamentReconstruction

Similar Articles

Cited By