Dynamic Temporal Alterations of the Cerebellum in Parkinson's Disease With Different Dominant-Affected Sides.

Lili Chen, Junling Wang, Linlin Gao, Junyan Sun, Dongling Zhang, Tao Wu
Author Information
  1. Lili Chen: Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  2. Junling Wang: Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
  3. Linlin Gao: Department of General Medicine, Tianjin Union Medical Center, Tianjin, China.
  4. Junyan Sun: Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
  5. Dongling Zhang: Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
  6. Tao Wu: Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

Abstract

Laterality of motor deficits is a hallmark of Parkinson's disease (PD), which is strongly correlated with disease progression. The cerebellum is an important node in the motor-related network in PD. However, the role of the cerebellum in PD lateralization remains unclear. This study enrolled 48 left-dominant-affected PD patients (LPD), 60 right-dominant-affected PD patients (RPD) and 92 age- and sex-matched healthy controls (HCs). We utilized dynamic functional connectivity and co-activation pattern analysis to investigate dynamic alterations of the cerebellum between PD patients and HCs by resting-state fMRI. Pearson partial correlation was used to measure brain-clinical correlations. We revealed two states and five co-activation patterns during the scans. Compared to HCs and RPD, LPD patients more frequently displayed State II and persisted in this state for a more extended period. The mean dwell time (MDT) in State II rose from HCs to RPD and to LPD. The MDT in State II was positively correlated with sleep disturbance in LPD patients. Regarding co-activation patterns (CAPs), LPD and RPD patients were less likely to exhibit CAP2. LPD patients were less likely to demonstrate CAP1 compared to HCs. The CAP1 metrics were positively associated with motor deficits in LPD patients. These results revealed the dynamic alterations of the cerebellum in different dominant-affected PD patients, which were related to motor deficits and sleep disturbances in PD patients. Our findings suggest that the dynamic cerebellar features may be significant factors in the lateralization of PD.

Keywords

References

  1. Ballanger, B., P. Baraduc, E. Broussolle, D. Le Bars, M. Desmurget, and S. Thobois. 2008. “Motor Urgency Is Mediated by the Contralateral Cerebellum in Parkinson's Disease.” Journal of Neurology, Neurosurgery, and Psychiatry 79, no. 10: 1110–1116. https://doi.org/10.1136/jnnp.2007.141689.
  2. Baumann, C. R., U. Held, P. O. Valko, M. Wienecke, and D. Waldvogel. 2014. “Body Side and Predominant Motor Features at the Onset of Parkinson's Disease Are Linked to Motor and Nonmotor Progression.” Movement Disorders 29, no. 2: 207–213. https://doi.org/10.1002/mds.25650.
  3. Blum, D., C. la Fougere, A. Pilotto, et al. 2018. “Hypermetabolism in the Cerebellum and Brainstem and Cortical Hypometabolism Are Independently Associated With Cognitive Impairment in Parkinson's Disease.” European Journal of Nuclear Medicine and Molecular Imaging 45, no. 13: 2387–2395. https://doi.org/10.1007/s00259‐018‐4085‐1.
  4. Bolton, T. A. W., C. Tuleasca, D. Wotruba, et al. 2020. “TbCAPs: A Toolbox for Co‐Activation Pattern Analysis.” NeuroImage 211: 116621. https://doi.org/10.1016/j.neuroimage.2020.116621.
  5. Chen, J. E., C. Chang, M. D. Greicius, and G. H. Glover. 2015. “Introducing Co‐Activation Pattern Metrics to Quantify Spontaneous Brain Network Dynamics.” NeuroImage 111: 476–488. https://doi.org/10.1016/j.neuroimage.2015.01.057.
  6. Chen, L., P. Bedard, M. Hallett, and S. G. Horovitz. 2021. “Dynamics of Top‐Down Control and Motor Networks in Parkinson's Disease.” Movement Disorders 36, no. 4: 916–926. https://doi.org/10.1002/mds.28461.
  7. Diedrichsen, J., J. H. Balsters, J. Flavell, E. Cussans, and N. Ramnani. 2009. “A Probabilistic MR Atlas of the Human Cerebellum.” NeuroImage 46, no. 1: 39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045.
  8. Djaldetti, R., I. Ziv, and E. Melamed. 2006. “The Mystery of Motor Asymmetry in Parkinson's Disease.” Lancet Neurology 5, no. 9: 796–802. https://doi.org/10.1016/S1474‐4422(06)70549‐X.
  9. Fiorenzato, E., A. P. Strafella, J. Kim, et al. 2019. “Dynamic Functional Connectivity Changes Associated With Dementia in Parkinson's Disease.” Brain 142, no. 9: 2860–2872. https://doi.org/10.1093/brain/awz192.
  10. Hacker, M. L., N. Rajamani, C. Neudorfer, et al. 2023. “Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease.” Annals of Neurology 94, no. 2: 271–284. https://doi.org/10.1002/ana.26674.
  11. Helmich, R. C., M. J. Janssen, W. J. Oyen, B. R. Bloem, and I. Toni. 2011. “Pallidal Dysfunction Drives a Cerebellothalamic Circuit Into Parkinson Tremor.” Annals of Neurology 69, no. 2: 269–281. https://doi.org/10.1002/ana.22361.
  12. Herz, D. M., D. Meder, J. A. Camilleri, S. B. Eickhoff, and H. R. Siebner. 2021. “Brain Motor Network Changes in Parkinson's Disease: Evidence From Meta‐Analytic Modeling.” Movement Disorders 36, no. 5: 1180–1190. https://doi.org/10.1002/mds.28468.
  13. Huang, P., Y. Y. Tan, D. Q. Liu, et al. 2017. “Motor‐Symptom Laterality Affects Acquisition in Parkinson's Disease: A Cognitive and Functional Magnetic Resonance Imaging Study.” Movement Disorders 32, no. 7: 1047–1055. https://doi.org/10.1002/mds.27000.
  14. Hutchison, R. M., T. Womelsdorf, E. A. Allen, et al. 2013. “Dynamic Functional Connectivity: Promise, Issues, and Interpretations.” NeuroImage 80: 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079.
  15. Kim, J., M. Criaud, S. S. Cho, et al. 2017. “Abnormal Intrinsic Brain Functional Network Dynamics in Parkinson's Disease.” Brain 140, no. 11: 2955–2967. https://doi.org/10.1093/brain/awx233.
  16. Li, K., W. Su, M. Chen, et al. 2020. “Abnormal Spontaneous Brain Activity in Left‐Onset Parkinson Disease: A Resting‐State Functional MRI Study.” Frontiers in Neurology 11: 727. https://doi.org/10.3389/fneur.2020.00727.
  17. Li, T., W. Le, and J. Jankovic. 2023. “Linking the Cerebellum to Parkinson Disease: An Update.” Nature Reviews Neurology 19, no. 11: 645–654. https://doi.org/10.1038/s41582‐023‐00874‐3.
  18. Liu, J., G. Shuai, W. Fang, et al. 2021. “Altered Regional Homogeneity and Connectivity in Cerebellum and Visual‐Motor Relevant Cortex in Parkinson's Disease With Rapid Eye Movement Sleep Behavior Disorder.” Sleep Medicine 82: 125–133. https://doi.org/10.1016/j.sleep.2021.03.041.
  19. Ma, Y., C. Tang, P. G. Spetsieris, V. Dhawan, and D. Eidelberg. 2007. “Abnormal Metabolic Network Activity in Parkinson's Disease: Test‐Retest Reproducibility.” Journal of Cerebral Blood Flow and Metabolism 27, no. 3: 597–605. https://doi.org/10.1038/sj.jcbfm.9600358.
  20. Meles, S. K., R. J. Renken, A. Janzen, et al. 2018. “The Metabolic Pattern of Idiopathic REM Sleep Behavior Disorder Reflects Early‐Stage Parkinson Disease.” Journal of Nuclear Medicine 59, no. 9: 1437–1444. https://doi.org/10.2967/jnumed.117.202242.
  21. Moroso, A., A. Ruet, D. Lamargue‐Hamel, et al. 2017. “Posterior Lobules of the Cerebellum and Information Processing Speed at Various Stages of Multiple Sclerosis.” Journal of Neurology, Neurosurgery, and Psychiatry 88, no. 2: 146–151. https://doi.org/10.1136/jnnp‐2016‐313867.
  22. O'Callaghan, C., M. Hornberger, J. H. Balsters, G. M. Halliday, S. J. Lewis, and J. M. Shine. 2016. “Cerebellar Atrophy in Parkinson's Disease and Its Implication for Network Connectivity.” Brain 139, no. Pt 3: 845–855. https://doi.org/10.1093/brain/awv399.
  23. Poewe, W., K. Seppi, C. M. Tanner, et al. 2017. “Parkinson Disease.” Nature Reviews Disease Primers 3: 17013. https://doi.org/10.1038/nrdp.2017.13.
  24. Postuma, R. B., D. Berg, M. Stern, et al. 2015. “MDS Clinical Diagnostic Criteria for Parkinson's Disease.” Movement Disorders 30, no. 12: 1591–1601. https://doi.org/10.1002/mds.26424.
  25. Prasad, S., J. Saini, R. Yadav, and P. K. Pal. 2018. “Motor Asymmetry and Neuromelanin Imaging: Concordance in Parkinson's Disease.” Parkinsonism & Related Disorders 53: 28–32. https://doi.org/10.1016/j.parkreldis.2018.04.022.
  26. Scherfler, C., K. Seppi, K. J. Mair, et al. 2012. “Left Hemispheric Predominance of Nigrostriatal Dysfunction in Parkinson's Disease.” Brain 135, no. Pt 11: 3348–3354. https://doi.org/10.1093/brain/aws253.
  27. Senbabaoglu, Y., G. Michailidis, and J. Z. Li. 2014. “Critical Limitations of Consensus Clustering in Class Discovery.” Scientific Reports 4: 6207. https://doi.org/10.1038/srep06207.
  28. Shen, L., C. Jiang, C. S. Hubbard, et al. 2020. “Subthalamic Nucleus Deep Brain Stimulation Modulates 2 Distinct Neurocircuits.” Annals of Neurology 88, no. 6: 1178–1193. https://doi.org/10.1002/ana.25906.
  29. Snider, S. B., and B. L. Edlow. 2020. “MRI in Disorders of Consciousness.” Current Opinion in Neurology 33, no. 6: 676–683. https://doi.org/10.1097/WCO.0000000000000873.
  30. Su, W., K. Li, C. M. Li, et al. 2021. “Motor Symptom Lateralization Influences Cortico‐Striatal Functional Connectivity in Parkinson's Disease.” Frontiers in Neurology 12: 619631. https://doi.org/10.3389/fneur.2021.619631.
  31. Sundermann, B., R. Feldmann, C. Mathys, et al. 2023. “Functional Connectivity of Cognition‐Related Brain Networks in Adults With Fetal Alcohol Syndrome.” BMC Medicine 21, no. 1: 496. https://doi.org/10.1186/s12916‐023‐03208‐8.
  32. Tomlinson, C. L., R. Stowe, S. Patel, C. Rick, R. Gray, and C. E. Clarke. 2010. “Systematic Review of Levodopa Dose Equivalency Reporting in Parkinson's Disease.” Movement Disorders 25, no. 15: 2649–2653. https://doi.org/10.1002/mds.23429.
  33. Wang, L., Z. Zhang, S. Wang, et al. 2023. “Deficient Dynamics of Prefrontal‐Striatal and Striatal‐Default Mode Network (DMN) Neural Circuits in Internet Gaming Disorder.” Journal of Affective Disorders 323: 336–344. https://doi.org/10.1016/j.jad.2022.11.074.
  34. Weber, S., J. Buhler, S. Loukas, et al. 2024. “Transient Resting‐State Salience‐Limbic Co‐Activation Patterns in Functional Neurological Disorders.” Neuroimage: Clinical 41: 103583. https://doi.org/10.1016/j.nicl.2024.103583.
  35. Wu, P., H. Yu, S. Peng, et al. 2014. “Consistent Abnormalities in Metabolic Network Activity in Idiopathic Rapid Eye Movement Sleep Behaviour Disorder.” Brain 137, no. Pt 12: 3122–3128. https://doi.org/10.1093/brain/awu290.
  36. Wu, T., and M. Hallett. 2013. “The Cerebellum in Parkinson's Disease.” Brain 136, no. Pt 3: 696–709. https://doi.org/10.1093/brain/aws360.
  37. Wu, T., Y. Hou, M. Hallett, J. Zhang, and P. Chan. 2015. “Lateralization of Brain Activity Pattern During Unilateral Movement in Parkinson's Disease.” Human Brain Mapping 36, no. 5: 1878–1891. https://doi.org/10.1002/hbm.22743.
  38. Zhang, C., Y. Lai, J. Li, et al. 2021. “Subthalamic and Pallidal Stimulations in Patients With Parkinson's Disease: Common and Dissociable Connections.” Annals of Neurology 90, no. 4: 670–682. https://doi.org/10.1002/ana.26199.
  39. Zhu, Y., S. Li, X. Da, et al. 2023. “Study of the Relationship Between Onset Lateralization and Hemispheric White Matter Asymmetry in Parkinson's Disease.” Journal of Neurology 270, no. 10: 5004–5016. https://doi.org/10.1007/s00415‐023‐11849‐1.

Grants

  1. 82071423/National Natural Science Foundation of China

MeSH Term

Humans
Parkinson Disease
Female
Male
Cerebellum
Middle Aged
Aged
Functional Laterality
Magnetic Resonance Imaging

Word Cloud

Created with Highcharts 10.0.0patientsPDLPDcerebellumHCsdynamicRPDmotordeficitsParkinson'sdiseaselateralizationco-activationStateIIcorrelatedfunctionalconnectivityalterationsfMRIrevealedpatternsMDTpositivelysleeplesslikelyCAP1Lateralityhallmarkstronglyprogressionimportantnodemotor-relatednetworkHoweverroleremainsunclearstudyenrolled48left-dominant-affected60right-dominant-affected92age-sex-matchedhealthycontrolsutilizedpatternanalysisinvestigateresting-statePearsonpartialcorrelationusedmeasurebrain-clinicalcorrelationstwostatesfivescansComparedfrequentlydisplayedpersistedstateextendedperiodmeandwelltimerosedisturbanceRegardingCAPsexhibitCAP2demonstratecomparedmetricsassociatedresultsdifferentdominant-affectedrelateddisturbancesfindingssuggestcerebellarfeaturesmaysignificantfactorsDynamicTemporalAlterationsCerebellumDiseaseDifferentDominant-AffectedSidesresting‐state

Similar Articles

Cited By

No available data.