Exposure to air pollution from coal-fired power plants and impacts on human health: a scoping review.

Nomfundo Mahlangeni, Thandi Kapwata, Candice Webster, Chantelle Howlett-Downing, Caradee Y Wright
Author Information
  1. Nomfundo Mahlangeni: Environment and Health Research Unit, 59097 South African Medical Research Council , Cape Town, South Africa. ORCID
  2. Thandi Kapwata: Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa. ORCID
  3. Candice Webster: Environment and Health Research Unit, 59097 South African Medical Research Council , Cape Town, South Africa. ORCID
  4. Chantelle Howlett-Downing: Environment and Health Research Unit, 59097 South African Medical Research Council , Pretoria, South Africa. ORCID
  5. Caradee Y Wright: Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa. ORCID

Abstract

Communities living in proximity to coal-fired power plants (CFPPs) may be at greater risk of negative health impacts from exposure to air pollution than communities living further away. The aim of this scoping review was to provide an update on the evidence of the health risks of air pollution exposure associated with living in proximity to CFPPs and to evaluate the relationship between residential proximity and the extent of the health burden. We followed the PRISMA-ScR guidelines and searched Google Scholar, PubMed, ScienceDirect, Scopus and Web of Science for relevant studies from inception up to 31 January 2024. Fifty-six studies were included with most articles published from 2016 to 2023 (n=33, 59���%) and 35 were in high income countries (63���%). Living close to CFPPs was frequently associated with increased odds or likelihood of respiratory disorders, adverse birth outcomes and child developmental issues. Interventions such as emission control systems or total shutdown of CFPPs led to improved health among communities living near CFPPs. The review highlights the health impacts from air pollution associated with living in proximity to CFPPs and the need for policy measures to reduce air pollution by installing emission control technologies or transitioning to cleaner energy sources.

Keywords

References

  1. Energy Institute . Statistical review of world energy; 2024. Available from: https://www.energyinst.org/statistical-review [Accessed 25 May 2024].
  2. American Lung Association . Toxic air: the case for cleaning up coal-fired power plants. 2011.
  3. International Energy Agency . Coal; 2023. Available from: https://www.iea.org/energy-system/fossil-fuels/coal [Accessed 20 May 2024].
  4. Global Energy Monitor C ; E3G, Reclaim Finance ; Sierra Club ; SFOC ; Kiko Network ; CAN Europe ; Bangladesh Groups ; ACJCE ; Chile Sustentable . Boom and bust coal 2023: tracking the global coal plant pipeline . Covina: Global Energy Monitor; 2023.
  5. Global Energy Monitor C ; E3G ; Reclaim Finance ; Sierra Club ; SFOC ; Kiko Network ; CAN Europe ; Bangladesh Groups ; Trend Asia ; ACJCE ; Chile Sustentable ; POLEN Transiciones Justas ; Iniciativa Climatica de Mexico ; Arayara . Boom and bust coal 2024: tracking the global coal plant pipeline . Covina: Global Energy Monitor; 2024.
  6. Glenn, BE, Espira, LM, Larson, MC, Larson, PS. Ambient air pollution and non-communicable respiratory illness in sub-Saharan Africa: a systematic review of the literature. Environ Health 2022;21:40. https://doi.org/10.1186/s12940-022-00852-0 . [DOI: 10.1186/s12940-022-00852-0]
  7. Liu, Q, Xu, C, Ji, G, Liu, H, Shao, W, Zhang, C, et al.. Effect of exposure to ambient PM(2.5) pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies. J Biomed Res 2017;31:130���42. https://doi.org/10.7555/jbr.31.20160071 . [DOI: 10.7555/jbr.31.20160071]
  8. Pun, VC, Kazemiparkouhi, F, Manjourides, J, Suh, HH. Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am J Epidemiol 2017;186:961���9. https://doi.org/10.1093/aje/kwx166 . [DOI: 10.1093/aje/kwx166]
  9. Yan, M, Ge, H, Zhang, L, Chen, X, Yang, X, Liu, F, et al.. Long-term PM2.5 exposure in association with chronic respiratory diseases morbidity: a cohort study in Northern China. Ecotoxicol Environ Saf 2022;244:114025. https://doi.org/10.1016/j.ecoenv.2022.114025 . [DOI: 10.1016/j.ecoenv.2022.114025]
  10. Cserbik, D, Chen, J-C, McConnell, R, Berhane, K, Sowell, ER, Schwartz, J, et al.. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ Int 2020;143:105933. https://doi.org/10.1016/j.envint.2020.105933 . [DOI: 10.1016/j.envint.2020.105933]
  11. Kao, C-C, Chen, C-C, Avelino, JL, Cortez, M-sP, Tayo, LL, Lin, Y-H, et al.. Infants��� neurodevelopmental effects of PM2.5 and persistent organohalogen pollutants exposure in southern Taiwan. Aerosol Air Qual Res 2019;19:2793���803. https://doi.org/10.4209/aaqr.2019.10.0550 . [DOI: 10.4209/aaqr.2019.10.0550]
  12. Institute of Medicine of the National Academies . Preterm birth: causes, consequences, and prevention. In: Behrman, R, Butler, AS, editors. The role of environmental toxicants in preterm birth . Washington DC: National Academies Press; 2007.
  13. Liu, Y, Xu, J, Chen, D, Sun, P, Ma, X. The association between air pollution and preterm birth and low birth weight in Guangdong, China. BMC Public Health 2019;19:3. https://doi.org/10.1186/s12889-018-6307-7 . [DOI: 10.1186/s12889-018-6307-7]
  14. Mendola, P, Nobles, C, Williams, A, Sherman, S, Kanner, J, Seeni, I, et al.. Air pollution and preterm birth: do air pollution changes over time influence risk in consecutive pregnancies among low-risk women? Int J Environ Res Publ Health 2019;16. https://doi.org/10.3390/ijerph16183365 . [DOI: 10.3390/ijerph16183365]
  15. Stieb, DM, Chen, L, Eshoul, M, Judek, S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res 2012;117:100���11. https://doi.org/10.1016/j.envres.2012.05.007 . [DOI: 10.1016/j.envres.2012.05.007]
  16. Zhang, T, Mao, W, Gao, J, Song, X, Li, L, Sun, X, et al.. The effects of PM2.5 on lung cancer-related mortality in different regions and races: a systematic review and meta-analysis of cohort studies. Air Qual Atmos Health 2022;15:1523���32. https://doi.org/10.1007/s11869-022-01193-0 . [DOI: 10.1007/s11869-022-01193-0]
  17. Henneman, L, Choirat, C, Dedoussi, I, Dominici, F, Roberts, J, Zigler, C. Mortality risk from United States coal electricity generation. Science 2023;382:941���6. https://doi.org/10.1126/science.adf4915 . [DOI: 10.1126/science.adf4915]
  18. Zhang, CH, Zierold, KM. Birth defects: spatial disparities and associations with proximity to coal-fired power plants in the United States. Exposure Health 2024. https://doi.org/10.1007/s12403-024-00673-1 [Epub ahead of print] . [DOI: 10.1007/s12403-024-00673-1]
  19. Morehouse, J, Rubin, E. Downwind and out: the strategic dispersion of power plants and their. Pollut SSRN Electron J 2021:1���46. [DOI: 10.2139/ssrn.3915247]
  20. Milner, J, Turner, G, Ibbetson, A, Eustachio Colombo, P, Green, R, Dangour, AD, et al.. Impact on mortality of pathways to net zero greenhouse gas emissions in England and Wales: a multisectoral modelling study. Lancet Planet Health 2023;7:e128���36. https://doi.org/10.1016/s2542-5196(22)00310-2 . [DOI: 10.1016/s2542-5196(22)00310-2]
  21. Qian, H, Xu, S, Cao, J, Ren, F, Wei, W, Meng, J, et al.. Air pollution reduction and climate co-benefits in China���s industries. Nat Sustain 2021;4:417���25. https://doi.org/10.1038/s41893-020-00669-0 . [DOI: 10.1038/s41893-020-00669-0]
  22. Paola, A. Global and regional coal phase-out requirements of the Paris Agreement: insights from the IPCC special report on 1.5��C . Berlin: Climate Analytics; 2019.
  23. Amster, E. Public health impact of coal-fired power plants: a critical systematic review of the epidemiological literature. Int J Environ Health Res 2021;31:558���80. https://doi.org/10.1080/09603123.2019.1674256 . [DOI: 10.1080/09603123.2019.1674256]
  24. Aromataris, E, Munn, Z. JBI manual for evidence synthesis . JBI; 2020. https://synthesismanual.jbi.global [Accessed 25 May 2024].
  25. Tricco, AC, Lillie, E, Zarin, W, O���Brien, KK, Colquhoun, H, Levac, D, et al.. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467���73. https://doi.org/10.7326/m18-0850 . [DOI: 10.7326/m18-0850]
  26. Mahlangeni, N, Kapwata, T, Laban, T, Wright, CY. Health risks among children from exposure to air pollution in areas where coal-fired power plants are located: a scoping review protocol. OSF 2023. https://osf.io/a8q3j [Accessed 20 May 2024].
  27. Mahlangeni, N, Kapwata, T, Laban, T, Wright, CY. Health risks of exposure to air pollution in areas where coal-fired power plants are located: protocol for a scoping review. BMJ Open 2024;14:e084074. https://doi.org/10.1136/bmjopen-2024-084074 . [DOI: 10.1136/bmjopen-2024-084074]
  28. Ouzzani, M, Hammady, H, Fedorowicz, Z, Elmagarmid, A. Rayyan���a web and mobile app for systematic reviews. Syst Rev 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4 . [DOI: 10.1186/s13643-016-0384-4]
  29. Critical Appraisal Skills Programme . CASP cohort study checklist; 2023. Available from: https://casp-uk.net/casp-tools-checklists/cohort-study-checklist/ [Accessed 25 May 2024].
  30. Critical Appraisal Skills Programme . CASP qualitative studies checklist; 2023. Available from: https://casp-uk.net/casp-tools-checklists/qualitative-studies-checklist/ [Accessed 25 May 2024].
  31. National Heart, Lung and Blood Institute (NHLBI) . Study quality assessment tools; 2021. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools [Accessed 25 May 2024].
  32. Tyndall, J. AACODS checklist . Flinders University; 2010. http://dspace.flinders.edu.au/dspace/ .
  33. Goren, AI, Hellmann, S. Changing prevalence of asthma among schoolchildren in Israel. Eur Respir J 1997;10:2279���84. https://doi.org/10.1183/09031936.97.10102279 . [DOI: 10.1183/09031936.97.10102279]
  34. Goren, AI, Helman, S, Goldsmith, JR. Longitudinal study of respiratory conditions among schoolchildren in Israel: interim report of an epidemiological monitoring program in the vicinity of a new coal-fired power plant. Arch Environ Health 1988;43:190���4. https://doi.org/10.1080/00039896.1988.9935852 . [DOI: 10.1080/00039896.1988.9935852]
  35. Lee, J, Kalia, V, Perera, F, Herbstman, J, Li, T, Nie, J, et al.. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ Int 2017;99:315���20. https://doi.org/10.1016/j.envint.2016.12.009 . [DOI: 10.1016/j.envint.2016.12.009]
  36. Perera, F, Li, TY, Lin, C, Tang, D. Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. Environ Res 2012;114:40���6. https://doi.org/10.1016/j.envres.2011.12.011 . [DOI: 10.1016/j.envres.2011.12.011]
  37. Perera, F, Li, TY, Zhou, ZJ, Yuan, T, Chen, YH, Qu, L, et al.. Benefits of reducing prenatal exposure to coal-burning pollutants to children���s neurodevelopment in China. Environ Health Perspect 2008;116:1396���400. https://doi.org/10.1289/ehp.11480 . [DOI: 10.1289/ehp.11480]
  38. Perera, F, Lin, CJ, Qu, L, Tang, D. Shorter telomere length in cord blood associated with prenatal air pollution exposure: benefits of intervention. Environ Int 2018;113:335���40. https://doi.org/10.1016/j.envint.2018.01.005 . [DOI: 10.1016/j.envint.2018.01.005]
  39. Tang, D, Lee, J, Muirhead, L, Li, TY, Qu, L, Yu, J, et al.. Molecular and neurodevelopmental benefits to children of closure of a coal burning power plant in China. PLoS One 2014;9:e91966. https://doi.org/10.1371/journal.pone.0091966 . [DOI: 10.1371/journal.pone.0091966]
  40. Tang, D, Li, TY, Chow, JC, Kulkarni, SU, Watson, JG, Ho, SS, et al.. Air pollution effects on fetal and child development: a cohort comparison in China. Environ Pollut 2014;185:90���6. https://doi.org/10.1016/j.envpol.2013.10.019 . [DOI: 10.1016/j.envpol.2013.10.019]
  41. Tang, D, Li, TY, Liu, JJ, Chen, YH, Qu, L, Perera, F. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort. Environ Health Perspect 2006;114:1297���300. https://doi.org/10.1289/ehp.8939 . [DOI: 10.1289/ehp.8939]
  42. Tang, D, Li, TY, Liu, JJ, Zhou, ZJ, Yuan, T, Chen, YH, et al.. Effects of prenatal exposure to coal-burning pollutants on children���s development in China. Environ Health Perspect 2008;116:674���9. https://doi.org/10.1289/ehp.10471 . [DOI: 10.1289/ehp.10471]
  43. Zierold, KM, Myers, JV, Brock, GN, Sears, CG, Zhang, CH, Sears, L. Indoor coal ash and school and social competency among children aged 6-14 years. J Expo Sci Environ Epidemiol 2023;33:434���8. https://doi.org/10.1038/s41370-022-00500-2 . [DOI: 10.1038/s41370-022-00500-2]
  44. Zierold, KM, Myers, JV, Brock, GN, Zhang, CH, Sears, CG, Sears, L. Heavy metal(loid) body burden in environmentally exposed children with and without internalizing behavior problems. Exposure Health 2022;14:903���14. https://doi.org/10.1007/s12403-022-00469-1 . [DOI: 10.1007/s12403-022-00469-1]
  45. Zierold, KM, Sears, CG, Myers, JV, Brock, GN, Zhang, CH, Sears, L. Exposure to coal ash and depression in children aged 6-14 years old. Environ Res 2022;214:114005. https://doi.org/10.1016/j.envres.2022.114005 . [DOI: 10.1016/j.envres.2022.114005]
  46. Aekplakorn, W, Loomis, D, Vichit-Vadakan, N, Shy, C, Wongtim, S, Vitayanon, P. Acute effect of sulphur dioxide from a power plant on pulmonary function of children, Thailand. Int J Epidemiol 2003;32:854���61. https://doi.org/10.1093/ije/dyg237 . [DOI: 10.1093/ije/dyg237]
  47. Amster, ED, Haim, M, Dubnov, J, Broday, DM. Contribution of nitrogen oxide and sulfur dioxide exposure from power plant emissions on respiratory symptom and disease prevalence. Environ Pollut 2014;186:20���8. https://doi.org/10.1016/j.envpol.2013.10.032 . [DOI: 10.1016/j.envpol.2013.10.032]
  48. Barbhaya, D, Hejjaji, V, Vijayaprakash, A, Rahimian, A, Yamparala, A, Yakkali, S, et al.. The burden of premature mortality from coal-fired power plants in India is high and inequitable. Environ Res Lett 2022;17:104022. https://doi.org/10.1088/1748-9326/ac91e3 . [DOI: 10.1088/1748-9326/ac91e3]
  49. Barik, P, Naoghare, P, Sivanesan, S, Kannan, K, Middey, A. Increased average annual prevalence of upper respiratory tract infection (UTRI) in the central Indian population residing near the coal-fired thermal power plants. SN Appl Sci 2021;3:214. https://doi.org/10.1007/s42452-021-04222-2 . [DOI: 10.1007/s42452-021-04222-2]
  50. Barrows, G, Garg, T, Jha, A. The health costs of coal-fired power plants in India . IZA Institute of Labor Economics; 2019. [DOI: 10.2139/ssrn.3510449]
  51. Bencko, V, Symon, K, Chl��dek, V, Pihrt, J. Health aspects of burning coal with a high arsenic content: II. Hearing changes in exposed children. Environ Res 1977;13:386���95. https://doi.org/10.1016/0013-9351(77)90019-6 . [DOI: 10.1016/0013-9351(77)90019-6]
  52. Blanchard, KS, Palmer, RF, Stein, Z. The value of ecologic studies: mercury concentration in ambient air and the risk of autism. Rev Environ Health 2011;26:111���8. https://doi.org/10.1515/reveh.2011.015 . [DOI: 10.1515/reveh.2011.015]
  53. Casey, JA, Karasek, D, Ogburn, EL, Goin, DE, Dang, K, Braveman, PA, et al.. Retirements of coal and oil power plants in California: association with reduced preterm birth among populations nearby. Am J Epidemiol 2018;187:1586���94. https://doi.org/10.1093/aje/kwy110 . [DOI: 10.1093/aje/kwy110]
  54. Casey, JA, Su, JG, Henneman, LRF, Zigler, C, Neophytou, AM, Catalano, R, et al.. Improved asthma outcomes observed in the vicinity of coal power plant retirement, retrofit, and conversion to natural gas. Nat Energy 2020;5:398���408. https://doi.org/10.1038/s41560-020-0600-2 . [DOI: 10.1038/s41560-020-0600-2]
  55. Chen, C-HS, Yuan, T-H, Shie, R-H, Wu, K-Y, Chan, C-C. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants. Environ Int 2017;102:87���96. https://doi.org/10.1016/j.envint.2017.02.003 . [DOI: 10.1016/j.envint.2017.02.003]
  56. Chen, S, Li, Y, Shi, G, Zhu, Z. Gone with the wind? Emissions of neighboring coal-fired power plants and local public health in China. China Econ Rev 2021;69:101660. https://doi.org/10.1016/j.chieco.2021.101660 . [DOI: 10.1016/j.chieco.2021.101660]
  57. Chen, S, Li, Y, Yao, Q. The health costs of the industrial leap forward in China: evidence from the sulfur dioxide emissions of coal-fired power stations. China Econ Rev 2018;49:68���83. https://doi.org/10.1016/j.chieco.2018.01.004 . [DOI: 10.1016/j.chieco.2018.01.004]
  58. Collarile, P, Bidoli, E, Barbone, F, Zanier, L, Del Zotto, S, Fuser, S, et al.. Residence in proximity of a coal-oil-fired thermal power plant and risk of lung and bladder cancer in North-eastern Italy. A population-based study: 1995���2009. Int J Environ Res Publ Health 2017;14. https://doi.org/10.3390/ijerph14080860 . [DOI: 10.3390/ijerph14080860]
  59. Daouda, M, Henneman, L, Kioumourtzoglou, M-A, Gemmill, A, Zigler, C, Casey, JA. Association between county-level coal-fired power plant pollution and racial disparities in preterm births from 2000 to 2018. Environ Res Lett 2021;16:034055. https://doi.org/10.1088/1748-9326/abe4f7 . [DOI: 10.1088/1748-9326/abe4f7]
  60. Datt, G, Maitra, P, Menon, N, Ray, R. Coal plants, air pollution and anaemia: evidence from India. J Dev Stud 2023;59:533���51. https://doi.org/10.1080/00220388.2022.2132151 . [DOI: 10.1080/00220388.2022.2132151]
  61. Dubnov, J, Barchana, M, Rishpon, S, Leventhal, A, Segal, I, Carel, R, et al.. Estimating the effect of air pollution from a coal-fired power station on the development of children���s pulmonary function. Environ Res 2007;103:87���98. https://doi.org/10.1016/j.envres.2006.02.009 . [DOI: 10.1016/j.envres.2006.02.009]
  62. Fan, M, Wang, Y. The impact of PM(2.5) on mortality in older adults: evidence from retirement of coal-fired power plants in the United States. Environ Health 2020;19:28. https://doi.org/10.1186/s12940-020-00573-2 . [DOI: 10.1186/s12940-020-00573-2]
  63. Goren, AI, Hellmann, S, Glaser, ED. Use of outpatient clinics as a health indicator for communities around a coal-fired power plant. Environ Health Perspect 1995;103:1110���5. https://doi.org/10.2307/3432606 . [DOI: 10.2307/3432606]
  64. Ha, S, Hu, H, Roth, J, Kan, H, Xu, X. Associations between residential proximity to power plants and adverse birth outcomes. Am J Epidemiol 2015;182:215���24. https://doi.org/10.1093/aje/kwv042 . [DOI: 10.1093/aje/kwv042]
  65. Hagemeyer, AN, Sears, CG, Zierold, KM. Respiratory health in adults residing near a coal-burning power plant with coal ash storage facilities: a cross-sectional epidemiological study. Int J Environ Res Publ Health 2019;16:3642. https://doi.org/10.3390/ijerph16193642 . [DOI: 10.3390/ijerph16193642]
  66. Henneman, LRF, Choirat, C, Zigler, ACM. Accountability assessment of health improvements in the United States associated with reduced coal emissions between 2005 and 2012. Epidemiology 2019;30:477���85. https://doi.org/10.1097/ede.0000000000001024 . [DOI: 10.1097/ede.0000000000001024]
  67. Henry, RL, Bridgman, HA, Wlodarczyk, J, Abramson, R, Adler, JA, Hensley, MJ. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms. Pediatr Pulmonol 1991;11:134���40. https://doi.org/10.1002/ppul.1950110210 . [DOI: 10.1002/ppul.1950110210]
  68. Hii, M, Beyer, K, Namin, S, Malecki, K, Schultz, A, Rublee, C. Respiratory diseases, racial disparities, and residential proximity to coal power plants in Wisconsin, USA: a cross-sectional study. Lancet Global Health 2021;9:S19���S. https://doi.org/10.1016/s2214-109x(21)00127-3 . [DOI: 10.1016/s2214-109x(21)00127-3]
  69. Kamath, R, Udayar, SE, Jagadish, G, Prabhakaran, P, Madhipatla, KK, Research Team. Assessment of health status and impact of pollution from thermal power plant on health of population and environment around the plant in Udupi District, Karnataka. Indian J Publ Health 2022;66:91���7. https://doi.org/10.4103/ijph.ijph_1422_20 . [DOI: 10.4103/ijph.ijph_1422_20]
  70. Karavu��, M, Aker, A, Cebeci, D, Ta��demir, M, Bayram, N, ��ali, ��. Respiratory complaints and spirometric parameters of the villagers living around the seyitomer coal-fired thermal power plant in K��tahya, Turkey. Ecotoxicol Environ Saf 2002;52:214���20. https://doi.org/10.1006/eesa.2002.2158 . [DOI: 10.1006/eesa.2002.2158]
  71. Komisarow, S, Pakhtigian, EL. The effect of coal-fired power plant closures on emergency department visits for asthma-related conditions among 0- to 4-year-old children in Chicago, 2009���2017. Am J Publ Health 2021;111:881���9. https://doi.org/10.2105/ajph.2021.306155 . [DOI: 10.2105/ajph.2021.306155]
  72. Komisarow, S, Pakhtigian, EL. Are power plant closures a breath of fresh air? Local air quality and school absences. J Environ Econ Manag 2022;112:102569. https://doi.org/10.1016/j.jeem.2021.102569 . [DOI: 10.1016/j.jeem.2021.102569]
  73. Minichilli, F, Gorini, F, Bustaffa, E, Cori, L, Bianchi, F. Mortality and hospitalization associated to emissions of a coal power plant: a population-based cohort study. Sci Total Environ 2019;694:133757-. https://doi.org/10.1016/j.scitotenv.2019.133757 . [DOI: 10.1016/j.scitotenv.2019.133757]
  74. Mohorovic, L. First two months of pregnancy���critical time for preterm delivery and low birthweight caused by adverse effects of coal combustion toxics. Early Hum Dev 2004;80:115���23. https://doi.org/10.1016/j.earlhumdev.2004.06.001 . [DOI: 10.1016/j.earlhumdev.2004.06.001]
  75. Pala, K, T��rkkan, A, Ger��ek, H, Osman, E, Aytekin, H. Evaluation of respiratory functions of residents around the Orhaneli thermal power plant in Turkey. Asia Pac J Publ Health 2012;24:48���57. https://doi.org/10.1177/1010539510363622 . [DOI: 10.1177/1010539510363622]
  76. Pershagen, G, Hammar, N, Vartiainen, E. Respiratory symptoms and annoyance in the vicinity of coal-fired plants. Environ Health Perspect 1986;70:239���45. https://doi.org/10.2307/3430360 . [DOI: 10.2307/3430360]
  77. Quizon, RR, Torres, EB, Torres-Briola, TY, Lomboy, MFTC. Indoor air quality monitoring of communities surrounding a coal-fired power plant in Pagbilao, Quezon. Acta Med Philipp 2016. https://doi.org/10.47895/amp.v50i3.814 . [DOI: 10.47895/amp.v50i3.814]
  78. Rodriguez-Villamizar, LA, Rosychuk, RJ, Osornio-Vargas, A, Villeneuve, PJ, Rowe, BH. Proximity to two main sources of industrial outdoor air pollution and emergency department visits for childhood asthma in Edmonton, Canada. Can J Public Health 2018;108:e523���9. https://doi.org/10.17269/cjph.108.6136 . [DOI: 10.17269/cjph.108.6136]
  79. Sears, CG, Sears, L, Zierold, KM. Sex differences in the association between exposure to indoor particulate matter and cognitive control among children (age 6���14 years) living near coal-fired power plants. Neurotoxicol Teratol 2020;78:106855-. https://doi.org/10.1016/j.ntt.2020.106855 . [DOI: 10.1016/j.ntt.2020.106855]
  80. Severnini, E. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s. Nat Energy 2017;2:1���9. https://doi.org/10.1038/nenergy.2017.51 . [DOI: 10.1038/nenergy.2017.51]
  81. Shabani, IZ, Berisha, M, Gjorgjev, D, Dimovska, M, Moshammer, H, Uk��haxhaj, A. Air pollution in Kosovo: short term effects on hospital visits of children due to respiratory health diagnoses. Int J Environ Res Publ Health 2022;19. https://doi.org/10.3390/ijerph191610141 . [DOI: 10.3390/ijerph191610141]
  82. Wilkie, AA, Richardson, DB, Luben, TJ, Serre, ML, Woods, CG, Daniels, JL. Sulfur dioxide reduction at coal-fired power plants in North Carolina and associations with preterm birth among surrounding residents. Environ Epidemiol 2023;7:e241. https://doi.org/10.1097/ee9.0000000000000241 . [DOI: 10.1097/ee9.0000000000000241]
  83. Yang, M, Bhatta, RA, Chou, S-Y, Hsieh, C-I. The impact of prenatal exposure to power plant emissions on birth weight: evidence from a Pennsylvania power plant located upwind of New Jersey. J Pol Anal Manag 2017;36:557���83. https://doi.org/10.1002/pam.21989 . [DOI: 10.1002/pam.21989]
  84. Yogev-Baggio, T, Bibi, H, Dubnov, J, Or-Hen, K, Carel, R, Portnov, BA. Who is affected more by air pollution���sick or healthy? Some evidence from a health survey of schoolchildren living in the vicinity of a coal-fired power plant in Northern Israel. Health Place 2010;16:399���408. https://doi.org/10.1016/j.healthplace.2009.11.013 . [DOI: 10.1016/j.healthplace.2009.11.013]
  85. Zhang, CH, Sears, L, Myers, JV, Brock, GN, Sears, CG, Zierold, KM. Proximity to coal-fired power plants and neurobehavioral symptoms in children. J Expo Sci Environ Epidemiol 2022;32:124���34. https://doi.org/10.1038/s41370-021-00369-7 . [DOI: 10.1038/s41370-021-00369-7]
  86. Zierold, KM, Hagemeyer, AN, Sears, CG. Health symptoms among adults living near a coal-burning power plant. Arch Environ Occup Health 2020;75:289���96. https://doi.org/10.1080/19338244.2019.1633992 . [DOI: 10.1080/19338244.2019.1633992]
  87. Health and Environmental Alliance . The unpaid health bill: how coal power plants makes us sick; 2013.
  88. Papadogeorgou, G, Kioumourtzoglou, MA, Braun, D, Zanobetti, A. Low levels of air pollution and health: effect estimates, methodological challenges, and future directions. Curr Environ Health Rep 2019;6:105���15. https://doi.org/10.1007/s40572-019-00235-7 . [DOI: 10.1007/s40572-019-00235-7]
  89. Yazdi, MD, Wang, Y, Di, Q, Requia, WJ, Wei, Y, Shi, L, et al.. Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach. Lancet Planet Health 2021;5:e689���7. https://doi.org/10.1016/s2542-5196(21)00204-7 . [DOI: 10.1016/s2542-5196(21)00204-7]
  90. Cipoli, YA, Furst, L, Feliciano, M, Alves, C. Respiratory deposition dose of PM2.5 and PM10 during night and day periods at an urban environment. Air Qual Atmos Health 2023;16:2269���83. https://doi.org/10.1007/s11869-023-01405-1 . [DOI: 10.1007/s11869-023-01405-1]
  91. Deng, Q, Deng, L, Miao, Y, Guo, X, Li, Y. Particle deposition in the human lung: health implications of particulate matter from different sources. Environ Res 2019;169:237���45. https://doi.org/10.1016/j.envres.2018.11.014 . [DOI: 10.1016/j.envres.2018.11.014]
  92. Frampton, MW, Boscia, J, Roberts, NJ, Azadniv, M, Torres, A, Cox, C, et al.. Nitrogen dioxide exposure: effects on airway and blood cells. Am J Physiol Lung Cell Mol Physiol 2002;282:L155���65. https://doi.org/10.1152/ajplung.2002.282.1.l155 . [DOI: 10.1152/ajplung.2002.282.1.l155]
  93. Sun, X, Luo, X, Zhao, C, Zhang, B, Tao, J, Yang, Z, et al.. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: a meta-analysis. Environ Pollut 2016;211:38���47. https://doi.org/10.1016/j.envpol.2015.12.022 . [DOI: 10.1016/j.envpol.2015.12.022]
  94. Li, G, Li, L, Liu, D, Qin, J, Zhu, H. Effect of PM2.5 pollution on perinatal mortality in China. Sci Rep 2021;11:7596. https://doi.org/10.1038/s41598-021-87218-7 . [DOI: 10.1038/s41598-021-87218-7]
  95. Luben, TJ, Wilkie, AA, Krajewski, AK, Njie, F, Park, K, Zelasky, S, et al.. Short-term exposure to air pollution and infant mortality: a systematic review and meta-analysis. Sci Total Environ 2023;898:165522. https://doi.org/10.1016/j.scitotenv.2023.165522 . [DOI: 10.1016/j.scitotenv.2023.165522]
  96. Nazarpour, S, Poursani, AS, Simbar, M, Yarandi, RB. The relationship between air pollution and infant mortality rate. Iran J Public Health 2023;52:1278���88. https://doi.org/10.18502/ijph.v52i6.12994 . [DOI: 10.18502/ijph.v52i6.12994]
  97. Woodruff, TJ, Darrow, LA, Parker, JD. Air pollution and postneonatal infant mortality in the United States, 1999-2002. Environ Health Perspect 2008;116:110���5. https://doi.org/10.1289/ehp.10370 . [DOI: 10.1289/ehp.10370]
  98. Morgan, ZEM, Bailey, MJ, Trifonova, DI, Naik, NC, Patterson, WB, Lurmann, FW, et al.. Prenatal exposure to ambient air pollution is associated with neurodevelopmental outcomes at 2 years of age. Environ Health 2023;22:11. https://doi.org/10.1186/s12940-022-00951-y . [DOI: 10.1186/s12940-022-00951-y]
  99. Capelo, R, Rohlman, DS, Jara, R, Garc��a, T, Vi��as, J, Lorca, JA, et al.. Residence in an area with environmental exposure to heavy metals and neurobehavioral performance in children 9-11 Years old: an explorative study. Int J Environ Res Publ Health 2022;19. https://doi.org/10.3390/ijerph19084732 . [DOI: 10.3390/ijerph19084732]
  100. Heng, YY, Asad, I, Coleman, B, Menard, L, Benki-Nugent, S, Hussein, WF, et al.. Heavy metals and neurodevelopment of children in low and middle-income countries: a systematic review. PLoS One 2022;17:e0265536. https://doi.org/10.1371/journal.pone.0265536 . [DOI: 10.1371/journal.pone.0265536]
  101. Amadi, CN, Orish, CN, Frazzoli, C, Orisakwe, OE. Association of autism with toxic metals: a systematic review of case-control studies. Pharmacol Biochem Behav 2022;212:173313. https://doi.org/10.1016/j.pbb.2021.173313 . [DOI: 10.1016/j.pbb.2021.173313]
  102. Zhou, S, Collier, S, Xu, J, Mei, F, Wang, J, Lee, Y-N, et al.. Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S. J Geophys Res Atmos 2016;121:6049���65. https://doi.org/10.1002/2015jd024568 . [DOI: 10.1002/2015jd024568]
  103. U.S. EPA . Good neighbor plan for 2015 ozone NAAQS; 2024. Available from: https://www.epa.gov/Cross-State-Air-Pollution/good-neighbor-plan-2015-ozone-naaqs [Accessed 19 September 2024].
  104. U.S. EPA . Power plants and neighboring communities; 2024. Available from: https://www.epa.gov/power-sector/power-plants-and-neighboring-communities [Accessed 31 July 2024].
  105. Burney, JA. The downstream air pollution impacts of the transition from coal to natural gas in the United States. Nat Sustain 2020;3:152���60. https://doi.org/10.1038/s41893-019-0453-5 . [DOI: 10.1038/s41893-019-0453-5]
  106. Martenies, SE, Akherati, A, Jathar, S, Magzamen, S. Health and environmental justice implications of retiring two coal-fired power plants in the southern front range region of Colorado. GeoHealth 2019;3:266���83. https://doi.org/10.1029/2019gh000206 . [DOI: 10.1029/2019gh000206]
  107. Weng, Z, Song, Y, Cheng, C, Tong, D, Xu, M, Wang, M, et al.. Possible underestimation of the coal-fired power plants to air pollution in China. Resour Conserv Recycl 2023;198:107208. https://doi.org/10.1016/j.resconrec.2023.107208 . [DOI: 10.1016/j.resconrec.2023.107208]
  108. Mailloux, NA, Abel, DW, Holloway, T, Patz, JA. Nationwide and regional PM2.5-related air quality health benefits from the removal of energy-related emissions in the United States. GeoHealth 2022;6:e2022GH000603. https://doi.org/10.1029/2022gh000603 . [DOI: 10.1029/2022gh000603]
  109. Do, TN, Burke, PJ. Phasing out coal power in a developing country context: insights from Vietnam. Energy Policy 2023;176:113512. https://doi.org/10.1016/j.enpol.2023.113512 . [DOI: 10.1016/j.enpol.2023.113512]
  110. European Commission . The Just Transition Mechanism: making sure no one is left behind; 2024. Available from: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/finance-and-green-deal/just-transition-mechanism_en [Accessed 19 September 2024].
  111. Li, J, Zhou, S, Wei, W, Qi, J, Li, Y, Chen, B, et al.. China���s retrofitting measures in coal-fired power plants bring significant mercury-related health benefits. One Earth 2020;3:777���87. https://doi.org/10.1016/j.oneear.2020.11.012 . [DOI: 10.1016/j.oneear.2020.11.012]
  112. Tsai, J-H, Chen, S-H, Chen, S-F, Chiang, H-L. Air pollutant emission abatement of the fossil-fuel power plants by multiple control strategies in Taiwan. Energies 2021;14. https://doi.org/10.3390/en14185716 . [DOI: 10.3390/en14185716]
  113. EPA . BAT guidance note on best available techniques for the energy sector (large combustion plant sector) , 1 ed. Wexford: Environmental Protection Agency; 2008.
  114. Harrington, W, Morgenstern, R, Shih, J-S, Bell, ML. Did the clean air Act Amendments of 1990 really improve air quality? Air Qual Atmos Health 2012;5:353���67. https://doi.org/10.1007/s11869-012-0176-5 . [DOI: 10.1007/s11869-012-0176-5]
  115. U.S. EPA . The benefits and costs of the clean air Act from 1990 to 2020; 2024. Second Prospective Study: Available from: https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act-1990-2020-second-prospective-study [Accessed 19 September 2024].
  116. Liu, Y, Zhou, Y, Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci Rep 2020;10:14518. https://doi.org/10.1038/s41598-020-71338-7 . [DOI: 10.1038/s41598-020-71338-7]

Word Cloud

Created with Highcharts 10.0.0healthCFPPsairpollutionlivingproximitypowerimpactsreviewassociatedcoal-firedplantsexposurecommunitiesscopingstudiesemissioncontrolCommunitiesmaygreaterrisknegativeawayaimprovideupdateevidencerisksevaluaterelationshipresidentialextentburdenfollowedPRISMA-ScRguidelinessearchedGoogleScholarPubMedScienceDirectScopusWebSciencerelevantinception31January2024Fifty-sixincludedarticlespublished20162023n=3359���%35highincomecountries63���%LivingclosefrequentlyincreasedoddslikelihoodrespiratorydisordersadversebirthoutcomeschilddevelopmentalissuesInterventionssystemstotalshutdownledimprovedamongnearhighlightsneedpolicymeasuresreduceinstallingtechnologiestransitioningcleanerenergysourcesExposurehumanhealth:coalenvironmentalimpactparticulatesplant

Similar Articles

Cited By

No available data.