Valorization of Agricultural Residues to Valuable Products: A Circular Bioeconomy Approach.

Stefan Shilev, Ivelina Neykova, Slaveya Petrova
Author Information
  1. Stefan Shilev: Department of Microbiology and Environmental Biotechnologies, Faculty of Plant Protection and Agroecology, Agricultural University - Plovdiv, Plovdiv, Bulgaria. stefan.shilev@au-plovdiv.bg.
  2. Ivelina Neykova: Department of Microbiology and Environmental Biotechnologies, Faculty of Plant Protection and Agroecology, Agricultural University - Plovdiv, Plovdiv, Bulgaria.
  3. Slaveya Petrova: Department of Microbiology and Environmental Biotechnologies, Faculty of Plant Protection and Agroecology, Agricultural University - Plovdiv, Plovdiv, Bulgaria.

Abstract

Intensive agricultural production generates a lot of residues yearly, exhausting and depleting the soils and accumulating pesticides and mineral fertilizers. Although introducing the no-till technologies is related to the reduction of tillage, leaving most of the plant residues on the field and decreasing fertigation, the global crop residues are estimated to be 2800 million tons per year. They could be successfully utilized via several approaches integrated into the circular bioeconomy concept. Thus, stopping the existing vicious circle of digging most of the primary materials such as fossil fuels, the vast application of chemical fertilizers, gaining increased or restored biodiversity, capturing CO into the soils and enhancing the organic content, having cleaner underground waters, soils and crop production, and finally improved quality of life. The transformation of these residues into value-added products faces various technological and commercialization difficulties that limit their fuller utilization. In the present chapter, we aim to describe the production of agricultural residues in the EU and present their properties and technologies for biological valorization. In addition, the potential risks associated with the micro- and nano-plastics content of agricultural residues are discussed.

Keywords

References

  1. GAP Report (2018) Global Agricultural Productivity Report (GAP Report) global harvest initiative. Washington. https://globalagriculturalproductivity.org/wpcontent/uploads/2019/01/GHI2018-GAP-Report_FINAL-10.03.pdf . Accessed 15 Dec 2023
  2. Yang Y, Liu L, Liu P, Ding J, Xu H, Liu S (2023) Improved global agricultural crop- and animal-specific ammonia emissions during 1961–2018. Agric Ecosyst Environ 344:108289. https://doi.org/10.1016/j.agee.2022.108289 [DOI: 10.1016/j.agee.2022.108289]
  3. Heinimann A, Mertz O, Frolking S, Christensen AE, Hurni K, Sedano F, Parsons Chini L, Sahajpal R, Hansen M, Hurtt G (2017) A global view of shifting cultivation: recent, current, and future extent. PLoS One 12(9):e0184479. https://doi.org/10.1371/journal.pone.0184479 [DOI: 10.1371/journal.pone.0184479]
  4. FAO (2021) The state of food and agriculture 2021. Making agrifood systems more resilient to shocks and stresses. FAO, Rome. https://doi.org/10.4060/cb4476en [DOI: 10.4060/cb4476en]
  5. Daryanto S, Wang L, Jacinthe P-A (2020) No-till is challenged: complementary management is crucial to improve its environmental benefits under a changing climate. Geogr Sustain 1(3):229–232. https://doi.org/10.1016/j.geosus.2020.09.003 [DOI: 10.1016/j.geosus.2020.09.003]
  6. Gellatly K, Dennis DT (2011) Plant biotechnology and GMOs. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, pp 9–22. ISBN: 9780080885049. https://doi.org/10.1016/B978-0-08-088504-9.00272-5
  7. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774
  8. Case SDC, Oelofse M, Hou Y, Oenema O, Jensen LS (2017) Farmer perceptions and use of organic waste products as fertilizers – a survey study of potential benefits and barriers. Agric Syst 151:84
  9. Eurostat (2024) Generation of waste by waste category, hazardousness and NACE Rev. 2 activity. https://ec.europa.eu/eurostat/databrowser/view/env_wasgen__custom_12603744/default/table?lang=en . Accessed 18 Jul 2024
  10. Ginni G, Kavitha S, Yukesh Kannah R, Bhatia SK, Kumar SA, Rajkumar M, Kumar G, Pugazhendhi A, Chi NTL, Banu JR (2021) Valorization of agricultural residues: different biorefinery routes. J Environ Chem Eng 9:105435. https://doi.org/10.1016/j.jece.2021.105435 [DOI: 10.1016/j.jece.2021.105435]
  11. Honorato-Salazar JA, Sadhukhan J (2020) Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food Bioprod Process 119:1–19. https://doi.org/10.1016/j.fbp.2019.10.005 [DOI: 10.1016/j.fbp.2019.10.005]
  12. Bhuyan N, Narzari R, Gogoi L, Bordoloi N, Hiloidhari M, Palsaniya DR, Deb U, Gogoi N, Kataki R (2020) Chapter 2: Valorization of agricultural wastes for multidimensional use. In: Kataki R, Pandey A, Khanal SK, Pant D (eds) Current developments in biotechnology and bioengineering. Elsevier, pp 41–78. https://doi.org/10.1016/B978-0-444-64309-4.00002-7 [DOI: 10.1016/B978-0-444-64309-4.00002-7]
  13. Kaur M (2024) Biowaste: introduction, origin, and management. In: Aslam R, Mobin M, Aslam J (eds) Sustainable food waste management. Materials horizons: from nature to nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-1160-4_3 [DOI: 10.1007/978-981-97-1160-4_3]
  14. Kuhad RC, Rapoport A, Kumar V, Singh D et al (2023) Biological pretreatment of lignocellulosic biomass: an environment-benign and sustainable approach for conversion of solid waste into value-added products. Crit Rev Environ Sci Technol 54(10):771–796. https://doi.org/10.1080/10643389.2023.2277670 [DOI: 10.1080/10643389.2023.2277670]
  15. Duque-Acevedo M, Belmonte-Urena LJ, Cortes-García FJ, Camacho-Ferre F (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv 22:e00902. https://doi.org/10.1016/j.gecco.2020.e00902 [DOI: 10.1016/j.gecco.2020.e00902]
  16. Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland – an approach to 2020 targets with a focus on algal biomass. Energies 6:6391–6412
  17. White & Oldfield (2016) Holistic analysis of agricultural waste, co-products, and by-products (AWCB) chains and logistics of AWCB valorisation systems. http://multisite.iris.cat/agrocycle/files/2017/12/D1.3_FHolisticAnalysisAWCB
  18. Kapoor R, Ghosh P, Kumar M, Sengupta S, Gupta A, Kumar SS, Vijay V, Kumar V, Vijay VK, Pant D (2020) Valorization of agricultural waste for biogas based circular economy in India: a research outlook. Bioresour Technol 304:123036
  19. Zahraee SM, Shiwakoti N, Stasinopoulos P (2020) Biomass supply chain environmental and socio-economic analysis: 40-years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass Bioenergy 142:105777
  20. EC (2019) Communication from the commission to the European parliament, the European council, the council, the European economic and social committee and the committee of the regions. 11 Dec 2019. COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1596443911913&uri=CELEX:52019DC0640#document2 . Accessed 11 Aug 2024
  21. Baruah N, Bora A, Gogoi N (2024) Agricultural waste in circular economy: an Indian scenario. In: Singh P (ed) Emerging trends and techniques in biofuel production from agricultural waste. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-8244-8_2 [DOI: 10.1007/978-981-99-8244-8_2]
  22. European Commission (2014) Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Towards a Circular Economy: a zero waste program for Europe, Document 52014DC0398R(01)
  23. Bishwambhar M, Yugal Kishore M, Nagendranatha Reddy C, Deepak Mohan Reddy S, Sanjeeb MK, Rajasri Y, Hemen S (2023) Valorization of agro-industrial biowaste to biomaterials: an innovative circular bioeconomy approach. Circ Econ 2:100050. https://doi.org/10.1016/j.cec.2023.100050 [DOI: 10.1016/j.cec.2023.100050]
  24. Rojas-Serrano F, Garcia-Garcia G, Parra-López C, Sayadi-Gmada S (2024) Sustainability, circular economy and bioeconomy: a conceptual review and integration into the notion of sustainable circular bioeconomy. New Medit 23(2). https://doi.org/10.30682/nm2402a
  25. Waqas M, Hashim S, Humphries UW, Ahmad S, Noor R, Shoaib M, Naseem A, Hlaing PT, Lin HA (2023) Composting processes for agricultural waste management: a comprehensive review. Processes 11(3):731. https://doi.org/10.3390/pr11030731 [DOI: 10.3390/pr11030731]
  26. van Groenestijn J, Harmsen P, Bos K (2019) Biomass for the circular economy. Wageningen Food & Biobased Research. ISBN: 978-94-6395-169-2. https://doi.org/10.18174/503632 [DOI: 10.18174/503632]
  27. Pavwelczyk A (2005) EU policy and legislation on recycling of organic wastes to agriculture. In: International Society for Animal Hygiene, vol 1.
  28. European Commission (2012) Innovating for sustainable growth: a bioeconomy for Europe, Brussels, 13 Feb 2012. COM(2012) 60
  29. Eurostat (2024) Treatment of waste by waste category, hazardousness and waste management operations. https://ec.europa.eu/eurostat/databrowser/view/ENV_WASTRT__custom_1886870/default/table?lang=en . Accessed 19 Jul 2024
  30. JRC (2009) Linking soil degradation processes, soil friendly farming practices and soil-relevant policy measures
  31. ETIP Bioenergy (2024) Wasted – Europe’s untapped resource: an assessment of advanced biofuels from wastes and residues. https://www.etipbioenergy.eu/value-chains/feedstocks/agriculture/agricultural-residues . Accessed 20 Aug 2024
  32. Ericsson K, Nilsson LJ (2006) Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 30:1–15
  33. De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34:188–202
  34. Fischer G, Prieler S, van Velthuizen H, Lensink SM, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part I: land productivity potentials. Biomass Bioenergy 34:159–172. https://doi.org/10.1016/J.BIOMBIOE.2009.07.008 [DOI: 10.1016/J.BIOMBIOE.2009.07.008]
  35. Scarlat N, Martinov M, Dallemand J-F (2010) Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manag 30:1889–1897. https://doi.org/10.1016/j.wasman.2010.04.016 [DOI: 10.1016/j.wasman.2010.04.016]
  36. Scarlat N, Fahl F, Lugato E, Monforti-Ferrario F, Dallemand JF (2019) Integrated and spatially explicit assessment of sustainable crop residues potential in Europe. Biomass Bioenergy 122:257–269. ISSN: 0961-9534. https://doi.org/10.1016/j.biombioe.2019.01.021 [DOI: 10.1016/j.biombioe.2019.01.021]
  37. Ugheoke IB, Mamat O (2012) A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo Int J Sci Technol 6:430
  38. Athira G, Bahurudeen A, Appari S (2019) Sustainable alternatives to carbon intensive paddy field burning in India: a framework for cleaner production in agriculture, energy, and construction industries. J Clean Prod 236:117598. https://doi.org/10.1016/j.jclepro.2019.07.073 [DOI: 10.1016/j.jclepro.2019.07.073]
  39. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337353
  40. Benítez V, Mollá E, Martín-Cabrejas MA, Aguilera Y, López-Andréu FJ, Cools K, Terry LA, Esteban RM (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr 66:48
  41. Gurría P, González H, Cazzaniga N, Jasinevicius G, Mubareka S, De Laurentiis V, Caldeira C, Sala S, Ronchetti G, Guillén J, Ronzon T, M’barek R (2022) EU biomass flows: update 2022. Publications Office of the European Union, Luxembourg. ISBN: 978-92-76-49477-5, JRC128384. https://doi.org/10.2760/082220 [DOI: 10.2760/082220]
  42. Powlson DS, Glendining MJ, Coleman K, Whitmore AP (2011) Implications for soil properties of removing cereal straw: results from long-term studies. Agron J 103(1):279–287
  43. Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35(4):957964
  44. Pattanaik L, Pattnaik F, Saxena DK, Naik SN (2019) Chapter 5: Biofuels from agricultural wastes. In: Second and third generation of feedstocks. Elsevier, pp 103–142. ISBN: 9780128151624. https://doi.org/10.1016/B978-0-12-815162-4.00005-7 [DOI: 10.1016/B978-0-12-815162-4.00005-7]
  45. Shilev S, Mitkov A, Popova V, Neykova I, Minev N, Szulc W, Yordanov Y, Yanev M (2024) Fertilization type differentially affects barley grain yield and nutrient content, soil and microbial properties. Microorganisms 12:1447. https://doi.org/10.3390/microorganisms12071447 [DOI: 10.3390/microorganisms12071447]
  46. Hepbasli A, Utlu Z, Akdeniz RC (2007) Energetic and exergetic aspects of cotton stalk production in establishing energy policies. Energy Policy 35:3015
  47. Cardoen D, Joshi P, Diels L, Sarma PM, Pant D (2015) Agriculture biomass in India: part 1. Estimation and characterization. Resour Conserv Recycl 102:39–48
  48. Kavitha S, Kannah RY, Kasthuri S, Gunasekaran M, Pugazhendi A, Rene ER, Pant D, Kumar G, Rajesh Banu J (2020) Profitable biomethane production from delignified rice straw biomass: the effect of lignin, energy and economic analysis. Green Chem 22:8024–8035. https://doi.org/10.1039/D0GC02738C [DOI: 10.1039/D0GC02738C]
  49. Jugwanth Y, Sewsynker-Sukai Y, Gueguim Kana EB (2020) Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: optimization and kinetic studies. Fuel 262:116552. https://doi.org/10.1016/j.fuel.2019.116552 [DOI: 10.1016/j.fuel.2019.116552]
  50. Guzmán AÁ, Delvasto AS, Sánchez VE (2015) Valorization of rice straw waste: an alternative ceramic raw material. Cerâmica 61(357):126–136. https://doi.org/10.1590/0366-69132015613571888 [DOI: 10.1590/0366-69132015613571888]
  51. Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ (2009) Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenergy 33:828–833. https://doi.org/10.1016/j.biombioe.2009.01.003 [DOI: 10.1016/j.biombioe.2009.01.003]
  52. Hsieh YY, Tsai YC, He JR, Yang PF, Lin HP, Hsu CH, Loganathan A (2017) Rice husk agricultural waste-derived low ionic content carbon–silica nanocomposite for green reinforced epoxy resin electronic packaging material. J Taiwan Inst Chem Eng 78:493
  53. Ali SW, Bairagi S, Bhattacharyya D (2022) Valorization of agricultural wastes: an approach to impart environmental friendliness. In: Shahid-ul-Islam AHS, Khan SA (eds) Handbook of biomass valorization for industrial applications. Wiley, pp 369–393
  54. Prinsen P, Gutierrez A, Faulds CB, del Río JC (2014) Comprehensive study of valuable lipophilic phytochemicals in wheat bran. J Agric Food Chem 62:1664–1673. https://doi.org/10.1021/jf404772b [DOI: 10.1021/jf404772b]
  55. Guo H, Zhang S, Kou Z, Zhai S, Ma W, Yang Y (2015) Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. Carbohydr Polym 115:177–185. https://doi.org/10.1016/j.carbpol.2014.08.041 [DOI: 10.1016/j.carbpol.2014.08.041]
  56. Indah S, Helard D, Sasmita A (2016) Utilization of maize husk (Zea mays L.) as low cost adsorbent in removal of iron from aqueous solution. Water Sci Technol 73:2929–2935. https://doi.org/10.2166/wst.2016.154 [DOI: 10.2166/wst.2016.154]
  57. Perea-Moreno M-A, Manzano-Agugliaro F, Hernandez-Escobedo Q, Perea-Moreno A-J (2018) Peanut shell for energy: properties and its potential to respect the environment. Sustainability 10:3254. https://doi.org/10.3390/su10093254 [DOI: 10.3390/su10093254]
  58. Duc PA, Dharanipriya P, Velmurugan BK, Shanmugavadivu M (2019) Groundnut shell – a beneficial bio-waste. Biocatal Agric Biotechnol 20:101206. https://doi.org/10.1016/j.bcab.2019.101206 [DOI: 10.1016/j.bcab.2019.101206]
  59. Alshehri AM, Aziz AT, Trivedi S, Panneerselvam C (2020) Efficacy of chitosan silver nanoparticles from shrimp-shell wastes against major mosquito vectors of public health importance. Green Process Synth 9:675–684. https://doi.org/10.1515/gps-2020-0062 [DOI: 10.1515/gps-2020-0062]
  60. Acampora A, Civitarese V, Sperandio G, Rezaei N (2021) Qualitative characterization of the pellet obtained from hazelnut and olive tree pruning. Energies 14(14):4083. https://doi.org/10.3390/en14144083 [DOI: 10.3390/en14144083]
  61. Akcay C, Ceylan F, Arslan R (2023) Production of oyster mushroom (Pleurotus ostreatus) from some waste lignocellulosic materials and FTIR characterization of structural changes. Sci Rep 13:12897. https://doi.org/10.1038/s41598-023-40200-x [DOI: 10.1038/s41598-023-40200-x]
  62. Bianchini L et al (2021) An industrial scale, mechanical process for improving pellet quality and biogas production from hazelnut and olive pruning. Energies 14(6):1600. https://doi.org/10.3390/en14061600 [DOI: 10.3390/en14061600]
  63. Surek E, Buyukkileci AO (2017) Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 174:565–571. https://doi.org/10.1016/j.carbpol.2017.06.109 [DOI: 10.1016/j.carbpol.2017.06.109]
  64. Schiavi D, Ronchetti R, di Lorenzo V, Salustri M, Petrucci C, Vivani R, Giovagnoli S, Camaioni E, Balestra G (2022) Circular hazelnut protection by lignocellulosic waste valorization for nanopesticides development. Appl Sci 12:2604. https://doi.org/10.3390/app12052604 [DOI: 10.3390/app12052604]
  65. Schiavi D, Francesconi S, Taddei AR, Fortunati E, Balestra GM (2022) Exploring cellulose nanocrystals obtained from olive tree wastes as sustainable crop protection tool against bacterial diseases. Sci Rep 12:6149. https://doi.org/10.1038/s41598-022-10225-9 [DOI: 10.1038/s41598-022-10225-9]
  66. Teixeira SR, Pena AFV, Miguel AG (2010) Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel. Waste Manag 30:804
  67. Teixeira SR, Romero M, Rincón JM (2010) Crystallization of SiO2–CaO–Na2O glass using sugarcane bagasse ash as silica source. J Am Ceram Soc 93:450
  68. Teixeira SR, Romero M, Rincón JM, Magalhães RS, Souza AE, Santos GTA, Silva RA (2011) IOP conference series: materials science and engineering, vol 18. IOP Publishing, p 112020
  69. Choi IS, Cho EJ, Moon JH, Bae HJ (2015) Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chem 188:537
  70. Jin E, Lim S, Oh Kim S, Park Y (2011) Optimization of various extraction methods for quercetin from onion skin using response surface methodology. Food Sci Biotechnol 20:1727
  71. Santagata R, Ripa M, Genovese A, Ulgiati S (2021) Food waste recovery pathways: challenges and opportunities for an emerging bio-based circular economy. A systematic review and an assessment. J Clean Prod 286:125490
  72. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478
  73. Dinova N, Peng W, Kirilova-Belouhova M, Li C, Schneider I, Nie E, Yotinov I, Duan H, Todorova Y, Lu F, Topalova Y, He P (2023) Functional and molecular approaches for studying and controlling microbial communities in anaerobic digestion of organic waste: a review. Rev Environ Sci Bio/Technol 22:563–590. https://doi.org/10.1007/s11157-023-09660-5 [DOI: 10.1007/s11157-023-09660-5]
  74. Hoang TD, Van Anh N, Yusuf M, Ali SA M, Subramanian Y, Nam NH, Ky NM, Le V-G, Huyen NTT, Bianasari AA, Azad AK (2024) Valorization of agriculture residues into value-added products: a comprehensive review of recent studies. Chem Rec 24:e202300333. https://doi.org/10.1002/tcr.202300333 [DOI: 10.1002/tcr.202300333]
  75. Kantarelis E, Zabaniotou A (2009) Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture. Bioresour Technol 100:942
  76. Kircher M, Aranda E, Panayiotopoulos A, Radojcic-Rednovnikov I, Romantschuk M, Ryberg M, Schock G, Shilev S, Stanescu MD, Stankeviciute J, Surmacz-Górska J, Tsipa A, Vasquez M, Villano M, Vorgias CA (2023) Treatment and valorization of bio-waste in the EU. EFB Bioecon J:100051. Online ISSN: 2667-0410. https://doi.org/10.1016/j.bioeco.2023.100051
  77. Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu DT, Show PL (2019) Waste to bioenergy: a review on the recent conversion technologies. BMC Energy 1:4
  78. Schneider I, Markov А, Yotinov I, Dinova N, Savov N, Topalova Y (2016) Creation and management of a pilot plant for composting of garden wastes. Ecol Eng Environ Prot 4:38–46
  79. Angelova D, Shilev S, Naydenov M (2016) Composting of sewage sludge at large scale for subsequent utilization in agriculture. In: Filcheva E, Stefanova I, Ilieva R (eds) 4th National conference of BHSS with 8–10 Sept 2016, Sofia, pp 285–295. ISBN: 978-619-90189-2-7
  80. Chopkova V, Petkova M, Shilev S (2023) Uncovering bacterial diversity during mesophilic and thermophilic phases of biowaste composting through next generation sequencing. Appl Sci 13:3111. https://doi.org/10.3390/app13053111 [DOI: 10.3390/app13053111]
  81. European Parliament (2009) Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption. https://eur-lex.europa.eu/eli/reg/2009/1069/oj . Accessed 1 Aug 2024
  82. Petkova M, Shilev S (2023) Revealing fungal diversity in mesophilic and thermophilic habitats of sewage sludge composting by next-generation sequencing. Appl Sci 13(9):5546. https://doi.org/10.3390/app13095546 [DOI: 10.3390/app13095546]
  83. Popova V, Petkova M, Shilev S (2023) Metagenomic approach unravelling bacterial diversity in combined composting and vermicomposting technology of agricultural wastes. Ecol Balk 15(3):135–150
  84. Silva RRA, Marques CS, Arruda TR, Teixeira SC, de Oliveira TV (2023) Biodegradation of polymers: stages, measurement, standards and prospects. Macromol 3:371–399. https://doi.org/10.3390/macromol3020023 [DOI: 10.3390/macromol3020023]
  85. Neykova I, Shilev S (2024) Compost and beneficial pseudomonas populations promote enzyme activity, amino acids, and polymers utilization patterns in heavy metal contaminated soils. Acta Microbiol Bulg 40(1):84–96. https://doi.org/10.59393/amb24400111 [DOI: 10.59393/amb24400111]
  86. Dinova N, Belouhova M, Schneider I, Rangelov J, Topalova Y (2018) Control of biogas production process by enzymatic and fluorescent image analysis. Biotechnol Biotechnol Equip. https://doi.org/10.1080/13102818.2018.1425637
  87. Dinova N, Peneva K, Belouhova M, Rangelov J, Schneider I, Topalova Y (2018) FISH analysis of microbial communities in a full-scale technology for biogas production. Eng Life Sci. https://doi.org/10.1002/elsc.201800041
  88. Ghasimi SMD, Idris A, Chuah TG et al (2009) The effect of C:N:P ratio, volatile fatty acids and Na+ levels on the performance of an anaerobic treatment of fresh leachate from municipal solid waste transfer station. Afr J Biotechnol 8(18):4572–4581
  89. Dhir B (2024) Biofuel production from agricultural waste: a global trend. In: Singh P (ed) Emerging trends and techniques in biofuel production from agricultural waste. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-8244-8_1 [DOI: 10.1007/978-981-99-8244-8_1]
  90. Tashtoush GM, Al-Widyan MI, Albatayneh AM (2007) Factorial analysis of diesel engine performance using different types of biofuels. J Environ Manag 84:401–411
  91. Hans M, Lugani Y, Chandel AK, Rai R, Kumar S (2021) Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. Biomass Convers Biorefinery 13:7423–7440
  92. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187
  93. Bertrand E, Dussap CG (2022) First generation bioethanol: fundamentals – definition, history, global production, evolution. In: Soccol CR, Amarante Guimarães Pereira G, Dussap CG, Porto de Souza Vandenberghe L (eds) Liquid biofuels: bioethanol. Biofuel and biorefinery technologies, vol 12. Springer, Cham
  94. Blasi A, Verardi A, Lopresto CG, Siciliano S, Sangiorgio P (2023) Lignocellulosic agricultural waste valorization to obtain valuable products: an overview. Recycling 8:61. https://doi.org/10.3390/recycling8040061 [DOI: 10.3390/recycling8040061]
  95. Singh L, Wahid ZA (2015) Methods for enhancing bio-hydrogen production from biological process: a review. J Ind Eng Chem 21:70–80
  96. Zhao L, Cao GL, Wang AJ, Ren HY, Xu CJ, Ren NQ (2013) Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production. GCB Bioenergy 5:591–598
  97. Kumar M, Sharma S, Kumar J, Mazumder S, Kumari U (2024) Biohydrogen production from various feedstocks: biohydrogen generation from biomass. In: Singh P (ed) Emerging trends and techniques in biofuel production from agricultural waste. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-8244-8_5 [DOI: 10.1007/978-981-99-8244-8_5]
  98. Kusuma HS, Az-Zahra KD, Saputri RW, Utomo MDP, Jaya DEC, Amenaghawon AN, Darmokoesoemo H (2024) Unlocking the potential of agricultural waste as biochar for sustainable biodiesel production: a comprehensive review. Bioresour Technol Rep 26:101848. ISSN: 2589-014X. https://doi.org/10.1016/j.biteb.2024.101848 [DOI: 10.1016/j.biteb.2024.101848]
  99. Kumar S, Mishra P, Sachan H, Saxena R, Rahul, Lal AK (2024) Biodiesel production from agricultural waste biomass. In: Arya RK, Verros GD, Verma OP, Hussain CM (eds) From waste to wealth. Springer, Singapore. https://doi.org/10.1007/978-981-99-7552-5_10 [DOI: 10.1007/978-981-99-7552-5_10]
  100. Damian CS, Devarajan Y, Jayabal R (2024) A comprehensive review of the resource efficiency and sustainability in biofuel production from industrial and agricultural waste. J Mater Cycles Waste Manag 26:1264–1276. https://doi.org/10.1007/s10163-024-01918-6 [DOI: 10.1007/s10163-024-01918-6]
  101. Lee J, Kim S, You S, Park YK (2023) Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew Sustain Energy Rev 178:113240
  102. Ciliberti C, Biundo A, Albergo R, Agrimi G, Braccio G, de Bari I, Pisano IS (2020) Derived from lignocellulosic biomass gasification as an alternative resource for innovative bioprocesses. Processes 8:1567
  103. Andrady AL (2003) Plastics and the environment. Wiley, Hoboken
  104. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190 [DOI: 10.1016/j.scitotenv.2017.01.190]
  105. Larue C, Sarret G, Castillo-Michel H, Pradas del Real AE (2021) A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small 17:2005834. https://doi.org/10.1002/smll.202005834 [DOI: 10.1002/smll.202005834]
  106. Prata JP, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455 [DOI: 10.1016/j.scitotenv.2019.134455]
  107. Urli S, Corte Pause F, Crociati M, Baufeld A, Monaci M, Stradaioli G (2023) Impact of microplastics and nanoplastics on livestock health: an emerging risk for reproductive efficiency. Animals 13:1132. https://doi.org/10.3390/ani13071132 [DOI: 10.3390/ani13071132]
  108. Wright S, Kelly F (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647. https://doi.org/10.1021/acs.est.7b00423 [DOI: 10.1021/acs.est.7b00423]
  109. Dronjak L, Exposito N, Sierra J, Schuhmacher M, Florencio K, Corzo B, Rovira J (2023) Tracing the fate of microplastic in wastewater treatment plant: a multi-stage analysis of treatment units and sludge. Environ Pollut 333:122072. https://doi.org/10.1016/j.envpol.2023.122072 [DOI: 10.1016/j.envpol.2023.122072]
  110. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:6223. https://jambeck.engr.uga.edu/wp-content/uploads/2022/02/science.1260352-Jambeck-et-al-2015.pdf
  111. Monira S, Roychand R, Hai FI, Bhuiyan M, Dhar BR, Pramanik BK (2023) Nano and microplastics occurrence in wastewater treatment plants: a comprehensive understanding of microplastics fragmentation and their removal. Chemosphere 334:139011. https://doi.org/10.1016/j.chemosphere.2023.139011 [DOI: 10.1016/j.chemosphere.2023.139011]
  112. Bodor A, Feigl G, Kolossa B, Mészáros E, Laczi K, Kovács E, Perei K, Rákhely G (2024) Soils in distress: the impacts and ecological risks of (micro)plastic pollution in the terrestrial environment. Ecotoxicol Environ Saf 269:115807. https://doi.org/10.1016/j.ecoenv.2023.115807 [DOI: 10.1016/j.ecoenv.2023.115807]
  113. Shafea L, Yap J, Beriot N, Felde VJ, Okoffo ED, Enyoh CE, Peth S (2023) Microplastics in agroecosystems: a review of effects on soil biota and key soil functions. J Plant Nutr Soil Sci 186(1):5–22
  114. Zhou J, Wen Y, Marshall MR, Zhao J, Gui H, Yang Y, Zang H (2021) Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci Total Environ 787:147444
  115. de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Micro-plastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416. https://doi.org/10.1111/gcb.14020 [DOI: 10.1111/gcb.14020]
  116. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782 [DOI: 10.1126/sciadv.1700782]
  117. Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395. https://doi.org/10.1016/j.envpol.2018.05.008 [DOI: 10.1016/j.envpol.2018.05.008]
  118. de Souza Machado A, Lau C, Kloas W, Bergmann J, Bachelier J, Faltin E, Becker R, Gorlich A, Rillig M (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53(10):6044–6052. https://doi.org/10.1021/acs.est.9b01339 [DOI: 10.1021/acs.est.9b01339]
  119. Guo J, Huang X, Xiang L, Wang Y, Li Y, Li H, Cai Q, Mo C, Wong M (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263 [DOI: 10.1016/j.envint.2019.105263]
  120. Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignatelli S, Loppi S, Gonnelli C (2022) Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J Hazard Mater 423(Part B):127238. https://doi.org/10.1016/j.jhazmat.2021.127238 [DOI: 10.1016/j.jhazmat.2021.127238]
  121. Nikolov B, Petrova S (2023) Are there plant biomarkers for microplastic pollution in soil? A review. Ecol Balk 15(1):232–245
  122. Nikolov B, Stanchev G, Petrova S (2023) Bioaccumulation of microplastics in Pisum sativum L. – a pot experiment. Ecol Balk 15(2):215–221
  123. Rillig MC, Lehmann A, De Souza Machado AA, Yang G (2019) Microplastic effects on plants. New Phytol 223:1066–1070. https://doi.org/10.1111/nph.15794 [DOI: 10.1111/nph.15794]
  124. Azeem I, Adeel M, Ahmad MA, Shakoor N, Jiangcuo GD, Azeem K, Ishfaq M, Sha-koor A, Ayaz M, Xu M (2021) Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials 11:2935. https://doi.org/10.3390/nano11112935 [DOI: 10.3390/nano11112935]
  125. Wang F, Feng X, Liu Y, Adams CA, Sun Y, Zhang S (2022) Micro(nano) plastics and terrestrial plants: up-to-date knowledge on uptake, translocation, and phytotoxicity. Resour Conserv Recycl 185:106503. https://doi.org/10.1016/j.resconrec.2022.106503 [DOI: 10.1016/j.resconrec.2022.106503]
  126. Huerta Lwanga E, Mendoza Vega J, Ku Quej V, Chi JLA, Sanchez Del Cid L, Chi C, Segura GE, Gertsen H, Salánki T, van der Ploeg M, Koelmans AA, Geissen V (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(1):1–7. https://doi.org/10.1038/s41598-017-14588-2 [DOI: 10.1038/s41598-017-14588-2]
  127. Li J, Song Y, Cai Y (2020) Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environ Pollut 257:113570. https://doi.org/10.1016/j.envpol.2019.113570 [DOI: 10.1016/j.envpol.2019.113570]
  128. Julen U, Itziar A, Carlos G (2019) Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 9:542. https://doi.org/10.3390/agronomy9090542 [DOI: 10.3390/agronomy9090542]
  129. Porterfield KK, Hobson SA, Neher DA, Niles MT, Roy ED (2023) Microplastics in composts, digestates, and food wastes: a review. J Environ Qual 2023(52):225–240
  130. Tan M, Sun Y, Gui J, Wang J, Chen X, Song W, Wu D (2022) Distribution characteristics of microplastics in typical organic solid wastes and their biologically treated products. Sci Total Environ 852:158440
  131. Cattle SR, Robinson C, Whatmuff M (2020) The character and distribution of physical contaminants found in soil previously treated with mixed waste organic outputs and garden waste compost. Waste Manag 101:94–105. https://doi.org/10.1016/j.wasman.2019.09.043 [DOI: 10.1016/j.wasman.2019.09.043]
  132. Öling-Wärnå V, Åkerback N, Engblom S (2023) Digestate from biowaste and sewage sludge as carriers of microplastic into the environment: case study of a thermophilic biogas plant in Ostrobothnia. Finland. Water Air Soil Pollut 234:432
  133. Braun M, Mail M, Heyse R, Amelung W (2021) Plastic in compost: prevalence and potential input into agricultural and horticultural soils. Sci Total Environ 760:143335
  134. Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 2:401–422. https://doi.org/10.1051/agro/2009040 [DOI: 10.1051/agro/2009040]
  135. Le V-R, Nguyen M-K, Nguyen H-L, Lin C, Rakib RJ, Thai V-A, Le V-G, Malafaia G, Idris AM (2023) Organic composts as A vehicle for the entry of microplastics into the environment: a comprehensive review. Sci Total Environ 892:164758
  136. Yang J, Li R, Zhou Q, Li L, Li Y, Tu C, Zhao X, Xiong K, Christie P, Luo Y (2020) Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environ Pollut 272:116028. https://doi.org/10.1016/j.envpol.2020.116028 [DOI: 10.1016/j.envpol.2020.116028]
  137. Rodrigues LC, Puig-Ventosa I, López M, Martínez FX, Ruiz AG, Bertrán TG (2019) The impact of improper materials in biowaste on the quality of compost. J Clean Prod 251:119601. https://doi.org/10.1016/j.jclepro.2019.119601 [DOI: 10.1016/j.jclepro.2019.119601]
  138. Bläsing M, Amelung W (2018) Plastics in soil-analytical methods and possible sources. Sci Total Environ:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086
  139. Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4:eaap8060. https://doi.org/10.1126/sciadv.aap8060 [DOI: 10.1126/sciadv.aap8060]
  140. Zhang S, Li Y, Chen X, Jiang X, Li J, Yang L, Yin X, Zhang X (2022) Occurrence and distribution of microplastics in organic fertilizers in China. Sci Total Environ 844:157061
  141. Colombini G, Rumpel C, Houot S, Biron P, Dignac M-F (2022) A long-term field experiment confirms the necessity of improving biowaste sorting to decrease coarse microplastic inputs in compost amended soils. Environ Pollut 315:120369
  142. Ranasingha ASYP, Karunarathna AK, Dandeniya WS, Nijamudeen MS, Hewagama GN (2024) Microplastic abundance in the locally produced commercial compost and the characteristics. Trop Agric Res 35(2):119–130
  143. Watteau F, Dignac M-F, Bouchard A, Revallier A, Houot S (2018) Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front Sustain Food Syst 253. https://doi.org/10.3389/fsufs.2018.00081
  144. Thomas D, Bloem E (2024) Visible intruders: tracing (micro-) plastic in organic fertilizers. Sci Total Environ 947:174311
  145. Vithanage M, Ramanayaka S, Hasinthara S, Navaratne A (2021) Compost as a carrier for microplastics and plastic-bound toxic metals into agroecosystems. Curr Opin Environ Sci Health 24:100297
  146. Li L, Geng S, Li Z, Song K (2020) Effect of microplastic on anaerobic digestion of wasted activated sludge. Chemosphere 247:125874. https://doi.org/10.1016/j.chemosphere.2020.125874 [DOI: 10.1016/j.chemosphere.2020.125874]
  147. Zhang Y, Wei W, Huang Q, Wang C, Wang Y, Ni B (2020) Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Res 179:115898. https://doi.org/10.1016/j.watres.2020.115898 [DOI: 10.1016/j.watres.2020.115898]
  148. Sun Y, Ren X, Pan J, Zhang Z, Tsui T, Luo L, Wang Q (2020) Effect of microplastics on greenhouse gas and ammonia emissions during aerobic composting. Sci Total Environ 737:139856. https://doi.org/10.1016/j.scitotenv.2020.139856 [DOI: 10.1016/j.scitotenv.2020.139856]
  149. Feng L, Aryal N, Li Y, Horn SJ, Ward AJ (2023) Developing a biogas centralised circular bioeconomy using agricultural residues – challenges and opportunities. Sci Total Environ 868:161656
  150. Wei W, Huang Q-S, Sun J, Dai X, Ni B-J (2019) Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge. Environ Sci Technol 53(16):9604–9613. https://doi.org/10.1021/acs.est.9b02971 [DOI: 10.1021/acs.est.9b02971]
  151. Zhou Y, Sun Y, Liu J, Ren X, Zhang Z, Wang Q (2022) Effects of microplastics on humification and fungal community during cow manure composting. Sci Total Environ 803:150029., ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.150029 [DOI: 10.1016/j.scitotenv.2021.150029]
  152. Blesa Marco ZE, Saez JA, Pedraza Torres AM, Martínez Sabater E, Orden L, Andreu-Rodríguez FJ, Bustamante MA, Marhuenda-Egea FC, Lopez MJ, Suarez-Estrella F, Moral R (2023) Effect of agricultural microplastic and mesoplastic in the vermicomposting process: response of Eisenia fetida and quality of the vermicomposts obtained. Environ Pollut 333:122027
  153. Ragoobur D, Huerta-Lwanga E, Devi Somaroo G (2022) Reduction of microplastics in sewage sludge by vermicomposting. Chem Eng J 450:138231
  154. Tran H-T, Dang B-T, Thuy LTT, Hoang H-G, Bui X-T, Le V-G, Lin C, Nguyen M-K, Nguyen K-Q, Nguyen P-T, Binh QA, Bui T-PT (2022) Advanced treatment technologies for the removal of organic chemical sunscreens from wastewater: a review. Curr Pollut Rep 8(3):288–302
  155. Tran H-T, Nguyen M-K, Hoang H-G, Hutchison JM, Vu CT (2022) Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: current status and future perspectives. Chemosphere 307:135989
  156. Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S (2022) Free radicals accelerate in situ ageing of microplastics during sludge composting. J Hazard Mater 429:128405
  157. Xing R, Sun H, Du X, Lin H, Qin S, Chen Z, Zhou S (2023) Enhanced degradation of microplastics during sludge composting via microbially-driven Fenton reaction. J Hazard Mater 449:131031
  158. Chen Z, Zhao W, Xing R, Xie S, Yang X, Cui P, Lü J, Liao H, Yu Z, Wang S (2020) Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. J Hazard Mater 384:121271
  159. Luo H, Liu C, He D, Xu J, Sun J, Li J, Pan X (2022) Environmental behaviors of microplastics in aquatic systems: a systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. J Hazard Mater 423:126915
  160. Nguyen MK, Hadi M, Lin C, Nguyen H-L, Thai V-B, Hoang H-G, Vo D-VN, Tran H-T (2022) Microplastics in sewage sludge: distribution, toxicity, identification methods, and engineered technologies. Chemosphere 308:136455
  161. Sun Y, Ren X, Rene ER, Wang Z, Zhou L, Zhang Z, Wang Q (2021) The degradation performance of different microplastics and their effect on microbial community during composting process. Bioresour Technol 332:125133
  162. Yu Z, Tang J, Liao H, Liu X, Zhou P, Chen Z, Rensing C, Zhou S (2018) The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour Technol 265:146–154
  163. Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F (2019) Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol 52:35–41
  164. Wang Z, Ding J, Song X, Zheng L, Huang J, Zou H, Wang Z (2023) Aging of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends under different conditions: environmental concerns on biodegradable plastic. Sci Total Environ 855:158921
  165. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly (lactic acid) and its nanocomposites. Polym Degrad Stab 94(10):1646–1655
  166. Sintim HY, Bary AI, Hayes DG, Wadsworth LC, Anunciado MB, English ME, Bandopadhyay S, Schaeffer SM, DeBruyn JM, Miles CA (2020) In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci Total Environ 727:138668
  167. Sun Y, Shaheen SM, Ali EF, Abdelrahman H, Sarkar B, Song H, Rinklebe J, Ren X, Zhang Z, Wang Q (2022) Enhancing microplastics biodegradation during composting using livestock manure biochar. Environ Pollut. 306:119339. https://doi.org/10.1016/j.envpol.2022.119339 [DOI: 10.1016/j.envpol.2022.119339]
  168. He D, Luo Y, Lu S, Liu M, Song Y, Lei L (2018) Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal Chem:163–172. https://doi.org/10.1016/j.trac.2018.10.006

Word Cloud

Created with Highcharts 10.0.0residuesagriculturalproductionsoilsfertilizerstechnologiescropbioeconomycontentproductspresentvalorizationAgriculturalCircularIntensivegenerateslotyearlyexhaustingdepletingaccumulatingpesticidesmineralAlthoughintroducingno-tillrelatedreductiontillageleavingplantfielddecreasingfertigationglobalestimated2800milliontonsperyearsuccessfullyutilizedviaseveralapproachesintegratedcircularconceptThusstoppingexistingviciouscirclediggingprimarymaterialsfossilfuelsvastapplicationchemicalgainingincreasedrestoredbiodiversitycapturingCOenhancingorganiccleanerundergroundwatersfinallyimprovedqualitylifetransformationvalue-addedfacesvarioustechnologicalcommercializationdifficultieslimitfullerutilizationchapteraimdescribeEUpropertiesbiologicaladditionpotentialrisksassociatedmicro-nano-plasticsdiscussedValorizationResiduesValuableProducts:BioeconomyApproachBiologicalPlasticsValue-added

Similar Articles

Cited By

No available data.