Estimation of elbow flexion torque using equilibrium optimizer on feature selection of NMES MMG signals and hyperparameter tuning of random forest regression.

Raphael Uwamahoro, Kenneth Sundaraj, Farah Shahnaz Feroz
Author Information
  1. Raphael Uwamahoro: Regional Centre of Excellence in Biomedical Engineering and E-Health, University of Rwanda, Kigali, Rwanda.
  2. Kenneth Sundaraj: Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia.
  3. Farah Shahnaz Feroz: Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia.

Abstract

Background: The assessment of limb joint torque is essential for understanding musculoskeletal system dynamics. Yet, the lack of direct muscle strength measurement techniques has prompted previous research to deploy joint torque estimation using machine learning models. These models often suffer from reduced estimation accuracies due to the presence of redundant and irrelevant information within the rapidly expanding complex biomedical datasets as well as suboptimal hyperparameters configurations.
Methods: This study utilized a random forest regression (RFR) model to estimate elbow flexion torque using mechanomyography (MMG) signals recorded during electrical stimulation of the biceps brachii (BB) muscle in 36 right-handed healthy subjects. Given the significance of both feature engineering and hyperparameter tuning in optimizing RFR performance, this study proposes a hybrid method leveraging the General Learning Equilibrium Optimizer (GLEO) to identify most informative MMG features and tune RFR hyperparameters. The performance of the GLEO-coupled with the RFR model was compared with the standard Equilibrium Optimizer (EO) and other state-of-the-art algorithms in physical and physiological function estimation using biological signals.
Results: Experimental results showed that selected features and tuned hyperparameters demonstrated a significant improvement in root mean square error (RMSE), coefficient of determination (R) and slope with values improving from 0.1330 to 0.1174, 0.7228 to 0.7853 and 0.6946 to 0.7414, respectively for the test dataset. Convergence analysis further revealed that the GLEO algorithm exhibited a superior learning capability compared to EO.
Conclusion: This study underscores the potential of the hybrid GLEO approach in selecting highly informative features and optimizing hyperparameters for machine learning models. These advancements are essential for evaluating muscle function and represent a significant advancement in musculoskeletal biomechanics research.

Keywords

References

  1. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1120-1126 [PMID: 35452389]
  2. Ageing Res Rev. 2023 Jan;83:101810 [PMID: 36471545]
  3. Front Oncol. 2022 Jul 22;12:956705 [PMID: 35936743]
  4. PLoS One. 2013;8(3):e58902 [PMID: 23536834]
  5. Sensors (Basel). 2021 Aug 10;21(16): [PMID: 34450853]
  6. Neural Netw. 2014 Jul;55:42-58 [PMID: 24721224]
  7. BMC Bioinformatics. 2019 May 16;20(1):253 [PMID: 31096906]
  8. Appl Ergon. 2021 Nov;97:103496 [PMID: 34171571]
  9. J Biomech. 2021 Jun 9;122:110456 [PMID: 33962326]
  10. Med Eng Phys. 2020 Jul;81:97-104 [PMID: 32507673]
  11. Sensors (Basel). 2022 Jun 20;22(12): [PMID: 35746432]
  12. Disabil Rehabil Assist Technol. 2024 May;19(4):1262-1271 [PMID: 36628433]
  13. IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):3113-3120 [PMID: 33186119]
  14. J Neurophysiol. 2019 Jul 1;122(1):413-423 [PMID: 31116661]
  15. J Sports Sci Med. 2005 Dec 01;4(4):395-405 [PMID: 24501553]
  16. Front Robot AI. 2019 Nov 22;6:120 [PMID: 33501135]
  17. Eur J Appl Physiol. 2004 Jul;92(3):352-9 [PMID: 15106005]
  18. Health Inf Sci Syst. 2018 Sep 20;6(1):13 [PMID: 30279983]
  19. Arch Phys Med Rehabil. 2023 Mar;104(3):444-450 [PMID: 36167118]
  20. Int J MS Care. 2018 Jul-Aug;20(4):186-190 [PMID: 30150903]
  21. J Electromyogr Kinesiol. 2024 Dec;79:102919 [PMID: 39243691]
  22. J Electromyogr Kinesiol. 2024 Apr;75:102864 [PMID: 38310768]
  23. J Electromyogr Kinesiol. 2014 Apr;24(2):207-13 [PMID: 24444832]
  24. Sensors (Basel). 2023 Sep 29;23(19): [PMID: 37836995]
  25. Physiother Can. 2017;69(5):1-76 [PMID: 29162949]
  26. Biomech Model Mechanobiol. 2022 Jun;21(3):983-997 [PMID: 35441905]
  27. Sensors (Basel). 2023 Sep 19;23(18): [PMID: 37766025]
  28. Med Eng Phys. 2019 Mar;65:68-77 [PMID: 30737118]
  29. Biomed Eng Online. 2021 Jan 03;20(1):1 [PMID: 33390158]
  30. Biomimetics (Basel). 2023 Dec 25;9(1): [PMID: 38248581]
  31. Ann Rehabil Med. 2023 Dec;47(6):444-458 [PMID: 38093518]
  32. J Electromyogr Kinesiol. 2016 Jun;28:67-75 [PMID: 27061680]
  33. Mech Ageing Dev. 2021 Jan;193:111402 [PMID: 33189759]
  34. J Musculoskelet Neuronal Interact. 2018 Dec 1;18(4):446-462 [PMID: 30511949]
  35. Eur J Appl Physiol. 2022 Jun;122(6):1521-1530 [PMID: 35426510]
  36. PLoS One. 2014 Aug 04;9(8):e104280 [PMID: 25090008]
  37. Comput Biol Med. 2022 Feb;141:105156 [PMID: 34942392]
  38. J Neurosci Methods. 2011 Jan 15;194(2):386-93 [PMID: 21087633]
  39. Brain Sci. 2022 Mar 28;12(4): [PMID: 35447988]
  40. Comput Biol Med. 2019 Sep;112:103375 [PMID: 31382212]
  41. J Musculoskelet Neuronal Interact. 2016 Dec 14;16(4):310-317 [PMID: 27973383]
  42. PLoS One. 2014 May 06;9(5):e96628 [PMID: 24802858]
  43. Top Stroke Rehabil. 2017 May;24(4):262-268 [PMID: 28054504]

Word Cloud

Created with Highcharts 10.0.00torquelearningestimationusinghyperparametersRFRjointmusclemachinemodelsstudyMMGsignalsGLEOfeaturesessentialmusculoskeletalresearchrandomforestregressionmodelelbowflexionmechanomyographyelectricalstimulationfeaturehyperparametertuningoptimizingperformancehybridEquilibriumOptimizerinformativecomparedEOfunctionsignificantequilibriumoptimizerBackground:assessmentlimbunderstandingsystemdynamicsYetlackdirectstrengthmeasurementtechniquespromptedpreviousdeployoftensufferreducedaccuraciesduepresenceredundantirrelevantinformationwithinrapidlyexpandingcomplexbiomedicaldatasetswellsuboptimalconfigurationsMethods:utilizedestimaterecordedbicepsbrachiiBB36right-handedhealthysubjectsGivensignificanceengineeringproposesmethodleveragingGeneralLearningidentifytuneGLEO-coupledstandardstate-of-the-artalgorithmsphysicalphysiologicalbiologicalResults:ExperimentalresultsshowedselectedtuneddemonstratedimprovementrootmeansquareerrorRMSEcoefficientdeterminationRslopevaluesimproving133011747228785369467414respectivelytestdatasetConvergenceanalysisrevealedalgorithmexhibitedsuperiorcapabilityConclusion:underscorespotentialapproachselectinghighlyadvancementsevaluatingrepresentadvancementbiomechanicsEstimationselectionNMESgeneralneuromuscular

Similar Articles

Cited By