From specialization to broad adoption: Key trends in droplet microfluidic innovations enhancing accessibility to non-experts.

Jolien Breukers, Karen Ven, Wannes Verbist, Iene Rutten, Jeroen Lammertyn
Author Information

Abstract

Droplet microfluidics has emerged as a versatile and powerful tool for various analytical applications, including single-cell studies, synthetic biology, directed evolution, and diagnostics. Initially, access to droplet microfluidics was predominantly limited to specialized technology labs. However, the landscape is shifting with the increasing availability of commercialized droplet manipulation technologies, thereby expanding its use to non-specialized labs. Although these commercial solutions offer robust platforms, their adaptability is often constrained compared to in-house developed devices. Consequently, both within the industry and academia, significant efforts are being made to further enhance the robustness and automation of droplet-based platforms, not only to facilitate technology transfer to non-expert laboratories but also to reduce experimental failures. This Perspective article provides an overview of recent advancements aimed at increasing the robustness and accessibility of systems enabling complex droplet manipulations. The discussion encompasses diverse aspects such as droplet generation, reagent addition, splitting, washing, incubation, sorting, and dispensing. Moreover, alternative techniques like double emulsions and hydrogel capsules, minimizing or eliminating the need for microfluidic operations by the end user, are explored. These developments are foreseen to facilitate the integration of intricate droplet manipulations by non-expert users in their workflows, thereby fostering broader and faster adoption across scientific domains.

References

  1. Curr Opin Biotechnol. 2023 Aug;82:102962 [PMID: 37336080]
  2. Small. 2024 Aug;20(33):e2400086 [PMID: 38563581]
  3. Lab Chip. 2017 Mar 29;17(7):1323-1331 [PMID: 28271118]
  4. Science. 2005 Apr 22;308(5721):537-41 [PMID: 15845850]
  5. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19163-6 [PMID: 20962271]
  6. Micromachines (Basel). 2022 Dec 30;14(1): [PMID: 36677164]
  7. Small. 2020 Aug;16(34):e2002400 [PMID: 32705796]
  8. ACS Sens. 2022 Aug 26;7(8):2170-2177 [PMID: 35537208]
  9. Anal Chim Acta. 2013 Jul 17;787:24-35 [PMID: 23830418]
  10. Lab Chip. 2012 Oct 21;12(20):3995-4002 [PMID: 22968539]
  11. SLAS Technol. 2020 Apr;25(2):177-189 [PMID: 31941402]
  12. Lab Chip. 2016 Nov 1;16(22):4313-4318 [PMID: 27714017]
  13. Langmuir. 2004 Nov 9;20(23):9905-8 [PMID: 15518471]
  14. Angew Chem Int Ed Engl. 2019 Jan 8;58(2):547-551 [PMID: 30395386]
  15. Chem Biol. 2008 May;15(5):427-37 [PMID: 18482695]
  16. Lab Chip. 2022 Apr 12;22(8):1604-1614 [PMID: 35332894]
  17. Lab Chip. 2022 Mar 1;22(5):859-875 [PMID: 35170611]
  18. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  19. Lab Chip. 2016 Aug 16;16(17):3235-43 [PMID: 27435869]
  20. Micromachines (Basel). 2018 Oct 11;9(10): [PMID: 30424446]
  21. Langmuir. 2022 May 24;38(20):6233-6248 [PMID: 35561292]
  22. Chem Commun (Camb). 2022 Sep 15;58(74):10303-10328 [PMID: 36043863]
  23. Lab Chip. 2023 Mar 1;23(5):1169-1191 [PMID: 36644972]
  24. Lab Chip. 2020 Nov 7;20(21):3948-3959 [PMID: 32935710]
  25. Lab Chip. 2020 Jun 21;20(12):2062-2074 [PMID: 32417874]
  26. Small. 2024 Jun;20(26):e2308950 [PMID: 38441226]
  27. Nat Commun. 2015 Dec 07;6:10008 [PMID: 26639611]
  28. Lab Chip. 2016 Apr 21;16(8):1314-31 [PMID: 27025767]
  29. Lab Chip. 2013 Apr 7;13(7):1308-15 [PMID: 23380996]
  30. Nat Chem. 2014 Sep;6(9):791-6 [PMID: 25143214]
  31. Biotechnol Biofuels. 2015 Nov 25;8:193 [PMID: 26613003]
  32. Lab Chip. 2012 Apr 24;12(10):1800-6 [PMID: 22453914]
  33. Cell Rep Methods. 2023 May 12;3(5):100478 [PMID: 37323570]
  34. Small. 2012 Aug 6;8(15):2356-60 [PMID: 22648761]
  35. Lab Chip. 2013 Dec 7;13(23):4563-72 [PMID: 24146020]
  36. Lab Chip. 2017 May 31;17(11):1913-1932 [PMID: 28509918]
  37. Lab Chip. 2024 Aug 6;24(16):3763-3774 [PMID: 39037291]
  38. Lab Chip. 2009 Jul 7;9(13):1850-8 [PMID: 19532959]
  39. Talanta. 2024 May 15;272:125765 [PMID: 38346358]
  40. Phys Rev Lett. 2004 Feb 6;92(5):054503 [PMID: 14995311]
  41. Lab Chip. 2018 Sep 26;18(19):2936-2945 [PMID: 30140820]
  42. Anal Chem. 2024 May 21;96(20):7817-7839 [PMID: 38650433]
  43. Lab Chip. 2014 Dec 7;14(23):4533-9 [PMID: 25270338]
  44. Nat Chem. 2017 Jan;9(1):50-56 [PMID: 27995916]
  45. Microsyst Nanoeng. 2022 Apr 29;8:46 [PMID: 35498338]
  46. Lab Chip. 2023 Mar 1;23(5):1080-1096 [PMID: 36628972]
  47. Angew Chem Int Ed Engl. 2022 Nov 25;61(48):e202207328 [PMID: 36130864]
  48. Chem Rev. 2023 May 10;123(9):5571-5611 [PMID: 37126602]
  49. Anal Chem. 2020 Nov 3;92(21):14616-14623 [PMID: 33049138]
  50. Anal Chem. 2018 Nov 20;90(22):13173-13177 [PMID: 30354065]
  51. Lab Chip. 2017 Feb 28;17(5):751-771 [PMID: 28197601]
  52. Lab Chip. 2009 Mar 7;9(5):692-8 [PMID: 19224019]
  53. Lab Chip. 2009 May 21;9(10):1344-8 [PMID: 19417899]
  54. Nat Protoc. 2017 Jan;12(1):44-73 [PMID: 27929523]
  55. Lab Chip. 2018 Mar 27;18(7):1121-1129 [PMID: 29536065]
  56. Microsyst Nanoeng. 2018 Oct 22;4:33 [PMID: 31057921]
  57. Nat Chem. 2024 Jul;16(7):1200-1208 [PMID: 38702405]
  58. Lab Chip. 2004 Aug;4(4):292-8 [PMID: 15269794]
  59. Nat Protoc. 2013 May;8(5):870-91 [PMID: 23558786]
  60. Nucleic Acids Res. 2023 Jan 11;51(1):e2 [PMID: 36268865]
  61. Anal Chem. 2014 Mar 4;86(5):2526-33 [PMID: 24517505]
  62. ACS Nano. 2022 May 24;16(5):7242-7257 [PMID: 35324146]
  63. Small. 2020 Mar;16(9):e1902889 [PMID: 31448532]
  64. Lab Chip. 2008 Nov;8(11):1837-41 [PMID: 18941682]
  65. Acc Chem Res. 2022 Jan 18;55(2):123-133 [PMID: 34898173]
  66. Lab Chip. 2011 Apr 7;11(7):1305-10 [PMID: 21321749]
  67. Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2405342121 [PMID: 39240970]
  68. ACS Synth Biol. 2017 Nov 17;6(11):1988-1995 [PMID: 28803463]
  69. Microsyst Nanoeng. 2019 Jul 1;5:22 [PMID: 31636920]
  70. Nat Protoc. 2024 Oct;19(10):2939-2966 [PMID: 38769144]
  71. Nat Biotechnol. 2022 Dec;40(12):1780-1793 [PMID: 35760914]
  72. Sensors (Basel). 2023 May 20;23(10): [PMID: 37430841]
  73. Trends Biotechnol. 2024 Mar;42(3):353-368 [PMID: 37777352]
  74. Lab Chip. 2021 Oct 26;21(21):4262-4273 [PMID: 34617550]
  75. Nat Commun. 2024 Oct 23;15(1):9146 [PMID: 39443484]
  76. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14843-8 [PMID: 23980147]
  77. J Am Chem Soc. 2013 Feb 6;135(5):1645-8 [PMID: 23157326]
  78. Lab Chip. 2013 May 7;13(9):1754-61 [PMID: 23478908]
  79. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9 [PMID: 20142500]
  80. ISME Commun. 2022 Sep 29;2(1):92 [PMID: 37938694]
  81. Sci Rep. 2017 Sep 5;7(1):10545 [PMID: 28874820]
  82. Lab Chip. 2019 Apr 23;19(9):1589-1598 [PMID: 30963149]
  83. Angew Chem Int Ed Engl. 2020 Mar 9;59(11):4470-4477 [PMID: 31868984]
  84. Methods Mol Biol. 2023;2689:155-167 [PMID: 37430053]
  85. Lab Chip. 2012 Oct 21;12(20):3907-13 [PMID: 22836582]
  86. Lab Chip. 2019 Mar 13;19(6):1041-1053 [PMID: 30762047]
  87. ACS Synth Biol. 2022 Jun 17;11(6):2108-2120 [PMID: 35549070]
  88. Biomicrofluidics. 2014 Aug 01;8(4):044113 [PMID: 25379098]
  89. Lab Chip. 2017 Mar 14;17(6):1024-1030 [PMID: 28232987]
  90. Lab Chip. 2015 Jan 7;15(1):47-51 [PMID: 25352174]
  91. ACS Synth Biol. 2019 Jun 21;8(6):1430-1440 [PMID: 31120731]
  92. Biomicrofluidics. 2019 Dec 06;13(6):064123 [PMID: 31832121]
  93. Nat Biotechnol. 2024 Aug 14;: [PMID: 39143416]
  94. Small Methods. 2021 Aug;5(8):e2100331 [PMID: 34927870]
  95. Nat Commun. 2021 Jan 4;12(1):25 [PMID: 33397940]
  96. Lab Chip. 2017 Oct 11;17(20):3388-3400 [PMID: 28820204]
  97. Methods Mol Biol. 2018;1685:297-309 [PMID: 29086317]
  98. Sci Rep. 2017 Jan 06;7:40072 [PMID: 28059147]
  99. Lab Chip. 2015 Feb 21;15(4):1153-9 [PMID: 25553996]
  100. Electrophoresis. 2011 Nov;32(23):3399-405 [PMID: 22072434]
  101. Lab Chip. 2009 Sep 21;9(18):2665-72 [PMID: 19704982]
  102. Lab Chip. 2016 Aug 16;16(17):3317-29 [PMID: 27435753]
  103. Biomicrofluidics. 2020 May 07;14(3):034101 [PMID: 32454925]
  104. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11570-5 [PMID: 22753519]
  105. Sci Rep. 2017 Jan 04;7:39385 [PMID: 28051104]
  106. Nat Protoc. 2023 Apr;18(4):1090-1136 [PMID: 36707723]
  107. Anal Chem. 2019 Nov 5;91(21):13978-13985 [PMID: 31576738]
  108. Lab Chip. 2011 Jun 7;11(11):1911-5 [PMID: 21505660]
  109. Lab Chip. 2020 Oct 27;20(21):4052-4062 [PMID: 33006353]
  110. RNA. 2015 Mar;21(3):458-69 [PMID: 25605963]
  111. Sci Adv. 2020 May 29;6(22):eaba6712 [PMID: 32524002]
  112. Lab Chip. 2015 Sep 7;15(17):3439-59 [PMID: 26226550]
  113. Anal Chem. 2020 Oct 6;92(19):13262-13270 [PMID: 32900183]
  114. Lab Chip. 2006 Mar;6(3):447-54 [PMID: 16511629]
  115. Small. 2020 Mar;16(9):e1903736 [PMID: 31559690]
  116. Electrophoresis. 2022 Feb;43(3):477-486 [PMID: 34599837]
  117. MAbs. 2021 Jan-Dec;13(1):1978130 [PMID: 34586015]
  118. Microsyst Nanoeng. 2023 Mar 9;9:24 [PMID: 36910256]
  119. Int J Cancer. 2024 Jan 1;154(1):145-154 [PMID: 37622267]
  120. Nat Biotechnol. 2017 Jul;35(7):640-646 [PMID: 28553940]
  121. Sci Rep. 2017 Aug 22;7(1):9109 [PMID: 28831060]
  122. Biomed Microdevices. 2015 Apr;17(2):35 [PMID: 25681970]
  123. Lab Chip. 2021 Jan 5;21(1):105-112 [PMID: 33295911]
  124. ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12282-12289 [PMID: 28345345]
  125. Nat Biotechnol. 2019 Dec;37(12):1452-1457 [PMID: 31611697]
  126. Biosens Bioelectron. 2023 Apr 1;225:115107 [PMID: 36731396]
  127. Lab Chip. 2022 Sep 13;22(18):3475-3488 [PMID: 35943442]
  128. Sci Rep. 2016 Jun 07;6:27223 [PMID: 27270141]
  129. Lab Chip. 2012 Apr 7;12(7):1320-6 [PMID: 22344399]
  130. Lab Chip. 2014 Mar 7;14(5):931-7 [PMID: 24385254]
  131. Lab Chip. 2022 Dec 20;23(1):195-202 [PMID: 36472476]
  132. Small. 2017 Nov;13(41): [PMID: 28873281]
  133. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  134. Micromachines (Basel). 2020 Oct 28;11(11): [PMID: 33126559]
  135. Lab Chip. 2014 Feb 21;14(4):806-13 [PMID: 24366236]
  136. Front Bioeng Biotechnol. 2021 May 07;9:668513 [PMID: 34026744]
  137. Lab Chip. 2024 Mar 26;24(7):2107-2121 [PMID: 38450543]
  138. Nat Commun. 2023 Aug 8;14(1):4788 [PMID: 37553326]
  139. Lab Chip. 2011 Nov 21;11(22):3838-45 [PMID: 21959960]
  140. Anal Chem. 2021 Jun 22;93(24):8622-8630 [PMID: 34110770]
  141. Cell. 2015 May 21;161(5):1187-1201 [PMID: 26000487]
  142. ACS Synth Biol. 2021 Feb 19;10(2):252-257 [PMID: 33502841]
  143. Anal Chem. 2019 May 21;91(10):6815-6819 [PMID: 31050286]
  144. iScience. 2022 Jun 02;25(7):104515 [PMID: 35733793]
  145. Elife. 2022 Feb 23;11: [PMID: 35195064]
  146. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8728-8733 [PMID: 28760972]
  147. Lab Chip. 2012 Mar 7;12(5):882-91 [PMID: 22277990]
  148. Cytometry A. 2024 Jul;105(7):547-554 [PMID: 38634684]
  149. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6685-6690 [PMID: 29899149]
  150. Nat Biotechnol. 2020 Jun;38(6):715-721 [PMID: 32231335]
  151. Lab Chip. 2019 Apr 9;19(8):1344-1351 [PMID: 30849144]

Word Cloud

Created with Highcharts 10.0.0dropletmicrofluidicstechnologylabsincreasingtherebyplatformsrobustnessfacilitatenon-expertaccessibilitymanipulationsmicrofluidicDropletemergedversatilepowerfultoolvariousanalyticalapplicationsincludingsingle-cellstudiessyntheticbiologydirectedevolutiondiagnosticsInitiallyaccesspredominantlylimitedspecializedHoweverlandscapeshiftingavailabilitycommercializedmanipulationtechnologiesexpandingusenon-specializedAlthoughcommercialsolutionsofferrobustadaptabilityoftenconstrainedcomparedin-housedevelopeddevicesConsequentlywithinindustryacademiasignificanteffortsmadeenhanceautomationdroplet-basedtransferlaboratoriesalsoreduceexperimentalfailuresPerspectivearticleprovidesoverviewrecentadvancementsaimedsystemsenablingcomplexdiscussionencompassesdiverseaspectsgenerationreagentadditionsplittingwashingincubationsortingdispensingMoreoveralternativetechniqueslikedoubleemulsionshydrogelcapsulesminimizingeliminatingneedoperationsenduserexploreddevelopmentsforeseenintegrationintricateusersworkflowsfosteringbroaderfasteradoptionacrossscientificdomainsspecializationbroadadoption:Keytrendsinnovationsenhancingnon-experts

Similar Articles

Cited By

No available data.