Diversity and distribution of the eukaryotic picoplankton in the oxygen minimum zone of the tropical Mexican Pacific.

David U Hern��ndez-Becerril, Raquel Rodr��guez-Mart��nez, Francisco Varona-Cordero, Mart��n Merino-Ibarra, P��ndaro D��az-Jaimes, Silvia Pajares
Author Information
  1. David U Hern��ndez-Becerril: Instituto de Ciencias del Mar y Limnolog��a, Universidad Nacional Aut��noma de M��xico (UNAM), Ciudad Universitaria, Coyoac��n, PC: 04510, Ciudad de M��xico, Mexico.
  2. Raquel Rodr��guez-Mart��nez: Laboratorio de Complejidad Microbiana y Ecolog��a Funcional, Instituto Antofagasta, Universidad de Antofagasta, Angamos 601, PC: 1240000, Antofagasta, Chile.
  3. Francisco Varona-Cordero: Instituto de Ciencias del Mar y Limnolog��a, Universidad Nacional Aut��noma de M��xico (UNAM), Ciudad Universitaria, Coyoac��n, PC: 04510, Ciudad de M��xico, Mexico.
  4. Mart��n Merino-Ibarra: Instituto de Ciencias del Mar y Limnolog��a, Universidad Nacional Aut��noma de M��xico (UNAM), Ciudad Universitaria, Coyoac��n, PC: 04510, Ciudad de M��xico, Mexico.
  5. P��ndaro D��az-Jaimes: Instituto de Ciencias del Mar y Limnolog��a, Universidad Nacional Aut��noma de M��xico (UNAM), Ciudad Universitaria, Coyoac��n, PC: 04510, Ciudad de M��xico, Mexico.
  6. Silvia Pajares: Instituto de Ciencias del Mar y Limnolog��a, Universidad Nacional Aut��noma de M��xico (UNAM), Ciudad Universitaria, Coyoac��n, PC: 04510, Ciudad de M��xico, Mexico. ORCID

Abstract

The ecology of eukaryotic picoplankton in oxygen minimum zones (OMZs) is crucial to understand global primary production, trophic dynamics and plankton diversity. This study analyses picoeukaryotic diversity and distribution patterns along the water column at two locations (slope and oceanic) in the tropical Mexican Pacific OMZ using metabarcoding and flow cytometry. Well-known groups of Chlorophytes (Mamiellophyceae) and Ochrophytes (Chrysophyceae, Dictyochophyceae, Pelagophyceae) occurred in high relative abundances, whereas less-known groups such as Chloropicophyceae and Prasinodermophyta were found in lower abundances. Picoeukaryotic diversity was higher at the lower end of the oxycline (10 ��M O) than at the surface and subsurface layers. Differential distributions of picoeukaryotes were also detected along the water column, with almost exclusive communities at each depth. Mamiellophyceae dominated the surface and subsurface layers, whereas Syndiniales (parasitic dinoflagellates), Radiolaria, Ochrophyta, and Sagenista (MArine STramenopiles -MAST groups-) were prevalent at the oxycline. Post-upwelling oceanographic conditions possibly contributed to shape the differences in community composition and distribution. These findings highlight that oxygen concentration is a key factor driving microbial distribution and that oxyclines provide specialized niches that promote high picoplankton diversity and multiple trophic strategies including autotrophy, mixotrophy, heterotrophy and parasitism.

Keywords

References

  1. Sci Total Environ. 2023 Oct 1;893:164927 [PMID: 37327897]
  2. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  3. Front Microbiol. 2022 Jan 06;12:764605 [PMID: 35069470]
  4. Nat Rev Microbiol. 2018 Dec;16(12):723-729 [PMID: 30250271]
  5. Appl Environ Microbiol. 2004 Jun;70(6):3528-34 [PMID: 15184153]
  6. Aquat Biosyst. 2013 Aug 20;9(1):16 [PMID: 23962380]
  7. Curr Biol. 2021 Oct 11;31(19):R1267-R1280 [PMID: 34637739]
  8. FEMS Microbiol Ecol. 2017 Jan;93(1): [PMID: 27677681]
  9. Nature. 2001 Feb 1;409(6820):607-10 [PMID: 11214317]
  10. Microb Ecol. 2020 Oct;80(3):519-536 [PMID: 32415330]
  11. Science. 2015 May 22;348(6237):1261359 [PMID: 25999513]
  12. Sci Rep. 2017 Oct 25;7(1):14019 [PMID: 29070840]
  13. Environ Microbiol. 2023 Jul;25(7):1281-1299 [PMID: 36861371]
  14. Sci Rep. 2021 Aug 10;11(1):16200 [PMID: 34376772]
  15. Environ Microbiol. 2022 May;24(5):2421-2434 [PMID: 35080092]
  16. Curr Protoc Cytom. 2001 May;Chapter 11:Unit 11.11 [PMID: 18770685]
  17. ISME J. 2020 Feb;14(2):437-449 [PMID: 31645670]
  18. Front Genet. 2021 Sep 07;12:706907 [PMID: 34557218]
  19. Proc Natl Acad Sci U S A. 2021 Jun 22;118(25): [PMID: 34155140]
  20. FEMS Microbiol Rev. 2008 Aug;32(5):795-820 [PMID: 18564290]
  21. Nat Rev Microbiol. 2012 May 14;10(6):381-94 [PMID: 22580367]
  22. Curr Opin Microbiol. 2008 Jun;11(3):213-8 [PMID: 18556239]
  23. ISME J. 2017 Feb;11(2):512-528 [PMID: 27779617]
  24. Ann Rev Mar Sci. 2011;3:317-45 [PMID: 21329208]
  25. Environ Microbiol. 2008 Dec;10(12):3349-65 [PMID: 18771501]
  26. Appl Environ Microbiol. 1987 Jun;53(6):1298-303 [PMID: 16347362]
  27. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):15996-6003 [PMID: 22967509]
  28. FEMS Microbiol Ecol. 2015 May;91(5): [PMID: 25873468]
  29. Nat Commun. 2021 Apr 16;12(1):2307 [PMID: 33863893]
  30. PeerJ. 2016 Nov 10;4:e2587 [PMID: 27867760]
  31. ISME J. 2012 Aug;6(8):1586-601 [PMID: 22402396]
  32. Environ Microbiol. 2007 May;9(5):1233-52 [PMID: 17472637]
  33. Sci Rep. 2019 Mar 26;9(1):5190 [PMID: 30914730]
  34. Science. 2015 May 22;348(6237):1261605 [PMID: 25999516]
  35. Appl Environ Microbiol. 2001 Jul;67(7):2932-41 [PMID: 11425705]
  36. Front Microbiol. 2014 Oct 28;5:543 [PMID: 25389417]
  37. Appl Environ Microbiol. 2012 May;78(9):3387-99 [PMID: 22344659]
  38. Nat Ecol Evol. 2020 Sep;4(9):1220-1231 [PMID: 32572216]
  39. Curr Opin Microbiol. 2016 Jun;31:169-175 [PMID: 27092409]
  40. Annu Rev Microbiol. 2011;65:91-110 [PMID: 21639789]
  41. Environ Microbiol. 2016 May;18(5):1578-90 [PMID: 26971724]
  42. Nucleic Acids Res. 2013 Jan;41(Database issue):D597-604 [PMID: 23193267]
  43. Biol Rev Camb Philos Soc. 2008 Nov;83(4):553-69 [PMID: 18823390]
  44. ISME J. 2014 Apr;8(4):854-66 [PMID: 24196325]

Word Cloud

Created with Highcharts 10.0.0distributionoxygendiversitypicoplanktonminimumtropicalMexicanPacificeukaryotictrophicpatternsalongwatercolumnmetabarcodingflowcytometrygroupsMamiellophyceaehighabundanceswhereasloweroxyclinesurfacesubsurfacelayerspicoeukaryoteszoneecologyzonesOMZscrucialunderstandglobalprimaryproductiondynamicsplanktonstudyanalysespicoeukaryotictwolocationsslopeoceanicOMZusingWell-knownChlorophytesOchrophytesChrysophyceaeDictyochophyceaePelagophyceaeoccurredrelativeless-knownChloropicophyceaePrasinodermophytafoundPicoeukaryotichigherend10 ��MODifferentialdistributionsalsodetectedalmostexclusivecommunitiesdepthdominatedSyndinialesparasiticdinoflagellatesRadiolariaOchrophytaSagenistaMArineSTramenopiles-MASTgroups-prevalentPost-upwellingoceanographicconditionspossiblycontributedshapedifferencescommunitycompositionfindingshighlightconcentrationkeyfactordrivingmicrobialoxyclinesprovidespecializednichespromotemultiplestrategiesincludingautotrophymixotrophyheterotrophyparasitismDiversity

Similar Articles

Cited By

No available data.