Clinical and genetic characteristics of glucose transporter 1 deficiency syndrome in a large cohort of Chinese patients.

Mei-Jiao Zhang, Shi-Min Zhang, Qing-Ping Zhang, Yong-Xin Wen, Jia-Ping Wang, Yu-Wu Jiang, Xin-Hua Bao
Author Information
  1. Mei-Jiao Zhang: Department of Pediatrics, Peking University First Hospital, Beijing, China.
  2. Shi-Min Zhang: Department of Pediatrics, Peking University People's Hospital, Beijing, China.
  3. Qing-Ping Zhang: Department of Pediatrics, Peking University First Hospital, Beijing, China.
  4. Yong-Xin Wen: Department of Pediatric Neurology, Guangdong Women and Children Hospital, Guangdong, China.
  5. Jia-Ping Wang: Department of Neurology, Beijing Children'S Hospital, Capital Medical University, Beijing, China.
  6. Yu-Wu Jiang: Department of Pediatrics, Peking University First Hospital, Beijing, China.
  7. Xin-Hua Bao: Department of Pediatrics, Peking University First Hospital, Beijing, China. zwhang@pku.edu.cn.

Abstract

BACKGROUND: Mutations in the SLC2A1 gene cause glucose transporter type 1 deficiency syndrome (Glut1DS). This study aimed to investigate the clinical and molecular genetics characteristics of Chinese patients with Glut1DS.
METHODS: The clinical data of patients with Glut1DS were analyzed retrospectively. SLC2A1 mutation analysis was performed using Sanger sequencing or next-generation sequencing (NGS). Multiplex ligation-dependent probe amplification (MLPA) was conducted in patients with negative results.
RESULTS: A total of 90 patients were diagnosed with Glut1DS, including 63 (70%) classic type and 27 (30%) non-classic type. Seizures occurred in 69 patients (77%), movement disorders were observed in 58 (68%), and episodic eye-head movements were noted in 17 (19%). Cerebrospinal fluid (CSF) glucose levels were available for 73 patients (81%), ranging from 1.0 to 2.6 mmol/L (median 1.9 mmol/L), with 90% (66/73) of patients showing levels below 2.2 mmol/L. Additionally, CSF-to-blood glucose ratios measured in 71 patients (79%) ranged from 0.20 to 0.63 (median 0.37), with 87% (62/71) of patients having ratios below 0.45. Genetic analysis identified 69 variants of the SLC2A1 gene including 39 previously reported and 30 unreported variants. The two most common variants were c.997C���>���T (p.Arg333Trp) and c.988C���>���T (p.Arg330*). Following ketogenic diet therapy, seizures were controlled in 47 of 57 patients (82%), movement disorders resolved in 18 of 47 patients (38%), and improved in 26 of 47 patients (55%).
CONCLUSIONS: The clinical manifestations of Glut1DS primarily include seizures, movement disorders, and developmental delay. Most affected children had CSF glucose levels below 2.2 mmol/L, with CSF-to-blood glucose ratios under 0.45. Two of the most common SLC2A1 variants were identified in our cohort. Ketogenic diet therapy was effective in controlling seizures, improving movement disorders, and was well tolerated.

Keywords

References

  1. Devivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose-transport across the blood-brain-barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. New Engl J Med. 1991;325:703���9. [DOI: 10.1056/NEJM199109053251006]
  2. Mastrangelo M, Manti F, Ricciardi G, Cinnante EMC, Cameli N, Beatrice A, et al. The diagnostic and prognostic role of cerebrospinal fluid biomarkers in glucose transporter 1 deficiency: a systematic review. Eur J Pediatr. 2024;183:3665���78. [DOI: 10.1007/s00431-024-05657-6]
  3. Liu Y, Bao X, Wang D, Fu N, Zhang X, Cao G, et al. Allelic variations of glut-1 deficiency syndrome: the Chinese experience. Pediatr Neurol. 2012;47:30���4. [DOI: 10.1016/j.pediatrneurol.2012.04.010]
  4. L��pez-Rivera JA, P��rez-Palma E, Symonds J, Lindy AS, McKnight DA, Leu C, et al. A catalogue of new incidence estimates of monogenic neurodevelopmental disorders caused by de novo variants. Brain. 2020;143:1099���105. [DOI: 10.1093/brain/awaa051]
  5. Symonds JD, Zuberi SM, Stewart K, McLellan A, O���Regan M, MacLeod S, et al. Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain. 2019;142:2303���18. [DOI: 10.1093/brain/awz195]
  6. Wang Y, Zhou Y, Luo L, Wang C, Shen N, Li H, et al. Ketogenic diet therapy in children with epilepsy caused by SLC2A1 mutations: a single-center single-arm retrospective study. World J Pediatr. 2024;20:517���24. [DOI: 10.1007/s12519-022-00620-7]
  7. Liu Y, Bao X, Wang S, Fu N, Liu X, Yang Y, et al. Clinical and genetic characteristics of glucose transporter type 1 deficiency syndrome. Chin J Pediatr. 2013;51:443���7.
  8. Klepper J, Akman C, Armeno M, Auvin S, Cervenka M, Cross HJ, et al. Glut1 Deficiency Syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open. 2020;5:354���65. [DOI: 10.1002/epi4.12414]
  9. Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68:955���8. [DOI: 10.1002/ana.22088]
  10. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133:655���70. [DOI: 10.1093/brain/awp336]
  11. Leary LD, Wang D, Nordli DR Jr, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia. 2003;44:701���77. [DOI: 10.1046/j.1528-1157.2003.05302.x]
  12. Madaan P, Jauhari P, Chakrabarty B, Gulati S. Jeavons syndrome in a family with GLUT1-deficiency syndrome. Seizure-Eur J Epilep. 2019;71:158���60. [DOI: 10.1016/j.seizure.2019.07.011]
  13. Pearson TS, Pons R, Engelstad K, Kane SA, Goldberg ME, De Vivo DC. Paroxysmal eye���head movements in Glut1 deficiency syndrome. Neurology. 2017;88:1666���73. [DOI: 10.1212/WNL.0000000000003867]
  14. Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 2013;70:1440���4. [DOI: 10.1001/jamaneurol.2013.3090]
  15. Wortmann SB, Feichtinger RG, Abela L, van Gemert LA, Aubart M, Dufeu-Berat CM, et al. Clinical, neuroimaging, and metabolic footprint of the neurodevelopmental disorder caused by monoallelic hk1 variants. Neurol Genet. 2024;10: e200146. [DOI: 10.1212/NXG.0000000000200146]
  16. Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70:996���1005. [DOI: 10.1002/ana.22640]
  17. Willemsen MA, Vissers LELM, Verbeek MM, van Bon BW, Geuer S, Gilissen C, et al. Upstream SLC2A1 translation initiation causes GLUT1 deficiency syndrome. Eur J Hum Genet. 2017;25:771���4. [DOI: 10.1038/ejhg.2017.45]
  18. Seidner G, Alvarez MG, Yeh JI, O���Driscoll KR, Klepper J, Stump TS, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet. 1998;18:188���91. [DOI: 10.1038/ng0298-188]
  19. Ito Y, Takahashi S, Kagitani-Shimono K, Natsume J, Yanagihara K, Fujii T, et al. Nationwide survey of glucose transporter-1 deficiency syndrome (GLUT-1DS) in Japan. Brain Dev. 2015;37:780���9. [DOI: 10.1016/j.braindev.2014.11.006]
  20. Klepper J, Leiendecker B. GLUT1 deficiency syndrome���2007 update. Dev Med Child Neurol. 2007;49:707���16. [DOI: 10.1111/j.1469-8749.2007.00707.x]
  21. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57:111���8. [DOI: 10.1002/ana.20331]
  22. Mauri A, Duse A, Palm G, Previtali R, Bova SM, Olivotto S, et al. Molecular genetics of GLUT1DS italian pediatric cohort: 10 novel disease-related variants and structural analysis. Int J Mol Sci. 2022;23:13560. [DOI: 10.3390/ijms232113560]
  23. Schwantje M, Verhagen LM, van Hasselt PM, Fuchs SA. Glucose transporter type 1 deficiency syndrome and the ketogenic diet. J Inherit Metab Dis. 2020;43:216���22. [DOI: 10.1002/jimd.12175]
  24. Bekker YAC, Lambrechts DA, Verhoeven JS, van Boxtel J, Troost C, Kamsteeg EJ, et al. Failure of ketogenic diet therapy in GLUT1 deficiency syndrome. Eur J Paediatr Neuro. 2019;23:404���9. [DOI: 10.1016/j.ejpn.2019.02.012]
  25. Tang M, Gao G, Rueda CB, Yu H, Thibodeaux DN, Awano T, et al. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun. 2017;8:14152. [DOI: 10.1038/ncomms14152]
  26. Angeli A, Ferraroni M, Granchi C, Minutolo F, Chen X, Shriwas P, et al. First-in-class dual targeting compounds for the management of seizures in glucose transporter type 1 deficiency syndrome. J Med Chem. 2023;66:10010���26. [DOI: 10.1021/acs.jmedchem.3c00938]
  27. van Gemert LA, van Alfen N, van Gaal L, Wortmann S, Willemsen MA. Effects of sodium lactate infusion in two girls with glucose transporter 1 deficiency syndrome. Neuropediatrics. 2023;54:365���70. [DOI: 10.1055/a-2134-8766]
  28. Logel SN, Connor EL, Hsu DA, Fenske RJ, Paloian NJ, De Vivo DC. Exploring diazoxide and continuous glucose monitoring as treatment for Glut1 deficiency syndrome. Ann Clin Transl Neurol. 2021;8:2205���9. [DOI: 10.1002/acn3.51462]
  29. M��laga I, Avila A, Primeaux S, Park JY, Pascual JM. A concise study of acetazolamide in glucose transporter type 1 deficiency (G1D) epilepsy. Epilepsia. 2023;64:e184���9. [DOI: 10.1111/epi.17684]
  30. Wang RC, Lee EE, De Simone N, Kathote G, Primeaux S, Avila A, et al. Red blood cells as glucose carriers to the human brain: Modulation of cerebral activity by erythrocyte exchange transfusion in Glut1 deficiency (G1D). J Cereb Blood Flow Metab. 2023;43:357���68. [DOI: 10.1177/0271678X221146121]
  31. Wong HY, Chu TS, Lai JC, Fung KP, Fok TF, Fujii T, et al. Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem. 2005;96:775���85. [DOI: 10.1002/jcb.20555]

Word Cloud

Created with Highcharts 10.0.0patientsglucoseGlut1DS0SLC2A1disorders1movementvariantstypeclinicallevels2ratiosseizures47genetransporterdeficiencysyndromecharacteristicsChineseanalysissequencingincluding6369CSFmedian2 mmol/LCSF-to-blood45identifiedcommoncpdiettherapycohortBACKGROUND:MutationscausestudyaimedinvestigatemoleculargeneticsMETHODS:dataanalyzedretrospectivelymutationperformedusingSangernext-generationNGSMultiplexligation-dependentprobeamplificationMLPAconductednegativeresultsRESULTS:total90diagnosed70%classic2730%non-classicSeizuresoccurred77%observed5868%episodiceye-headmovementsnoted1719%Cerebrospinalfluidavailable7381%ranging6 mmol/L9 mmol/L90%66/73showingAdditionallymeasured7179%ranged203787%62/71Genetic39previouslyreported30unreportedtwo997C���>���TArg333Trp988C���>���TArg330*Followingketogeniccontrolled5782%resolved1838%improved2655%CONCLUSIONS:manifestationsprimarilyincludedevelopmentaldelayaffectedchildrenTwoKetogeniceffectivecontrollingimprovingwelltoleratedClinicalgeneticlargeEpilepsyMovement

Similar Articles

Cited By