A comprehensive update on the use of molecular topology applications for anti-infective drug discovery.

Beatriz Suay-García, Joan Climent, María Teresa Pérez-Gracia, Antonio Falcó
Author Information
  1. Beatriz Suay-García: Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain. ORCID
  2. Joan Climent: Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain. ORCID
  3. María Teresa Pérez-Gracia: Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain. ORCID
  4. Antonio Falcó: Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain. ORCID

Abstract

INTRODUCTION: The rapid emergence of infectious diseases poses a significant threat to global economies and public health. To combat this, it is crucial to develop effective treatments. One essential tool in drug design is molecular topology, which uses topological indices to build QSAR models. This mathematical framework describes chemical compound structures, facilitating easy characterization.
AREAS COVERED: Classical ligand-based molecular topology has a series of limitations that can be overcome by shifting focus into structure-based approaches. Recent developments have emerged, focusing on target protein topology rather than drug molecules. Techniques like TDA, ESPH, LWPH, and molecular GDL are among the new methods being explored. This review is based on literature searches utilizing PubMed, Web of Science, and Google Scholar to identify articles published between the year 2000 and 2024.
EXPERT OPINION: The authors believe that it is time to move away from traditional molecular topology and toward innovative approaches and technologies. Shifting focus from ligand-based to structure-based molecular topology, combined with new databases and algorithms, can aid in fighting drug-resistant microorganisms. This shift opens a broader chemical space for developing new anti-infective drugs, ultimately improving public health outcomes.

Keywords

MeSH Term

Humans
Drug Discovery
Drug Design
Quantitative Structure-Activity Relationship
Anti-Infective Agents
Ligands
Communicable Diseases
Algorithms
Animals
Drug Resistance, Microbial
Drug Development

Chemicals

Anti-Infective Agents
Ligands

Word Cloud

Created with Highcharts 10.0.0moleculartopologydrugnewpublichealthdesigntopologicalchemicalligand-basedcanfocusstructure-basedapproachesanti-infectivelearningINTRODUCTION:rapidemergenceinfectiousdiseasesposessignificantthreatglobaleconomiescombatcrucialdevelopeffectivetreatmentsOneessentialtoolusesindicesbuildQSARmodelsmathematicalframeworkdescribescompoundstructuresfacilitatingeasycharacterizationAREASCOVERED:ClassicalserieslimitationsovercomeshiftingRecentdevelopmentsemergedfocusingtargetproteinrathermoleculesTechniqueslikeTDAESPHLWPHGDLamongmethodsexploredreviewbasedliteraturesearchesutilizingPubMedWebScienceGoogleScholaridentifyarticlespublishedyear20002024EXPERTOPINION:authorsbelievetimemoveawaytraditionaltowardinnovativetechnologiesShiftingcombineddatabasesalgorithmsaidfightingdrug-resistantmicroorganismsshiftopensbroaderspacedevelopingdrugsultimatelyimprovingoutcomescomprehensiveupdateuseapplicationsdiscoveryDrugantimicrobialtherapyrepurposingmachinegeometricdeepdataanalysis

Similar Articles

Cited By