Role of photon-counting computed tomography in pediatric cardiovascular imaging.

Arosh S Perera Molligoda Arachchige, Yash Verma
Author Information
  1. Arosh S Perera Molligoda Arachchige: Faculty of Medicine, Humanitas University, Pieve Emanuele 20072, Italy.
  2. Yash Verma: Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States.

Abstract

Photon-counting computed tomography (PCCT) represents a significant advancement in pediatric cardiovascular imaging. Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light, whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals. This direct conversion allows photon-counting detectors to sort photons into discrete energy levels, thereby enhancing image quality through superior noise reduction, improved spatial and contrast resolution, and reduced artifacts. In pediatric applications, PCCT offers substantial benefits, including lower radiation doses, which may help reduce the risk of malignancy in pediatric patients, with perhaps greater potential to benefit those with repeated exposure from a young age. Enhanced spatial resolution facilitates better visualization of small structures, vital for diagnosing congenital heart defects. Additionally, PCCT's spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images, which enhance soft-tissue contrast and potentially reduce contrast media doses. Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conventional CT, particularly in challenging pediatric cardiovascular cases. As PCCT technology matures, further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices, ensuring optimized diagnostic outcomes and patient safety.

Keywords

References

  1. Pediatr Radiol. 2022 Dec;52(13):2498-2509 [PMID: 34734316]
  2. Radiology. 2022 May;303(2):303-313 [PMID: 35166583]
  3. Eur J Radiol. 2020 May;126:108909 [PMID: 32145600]
  4. Clin Neuroradiol. 2024 Mar;34(1):51-52 [PMID: 37318559]
  5. Radiographics. 2018 Sep-Oct;38(5):1421-1440 [PMID: 30207943]
  6. Invest Radiol. 2022 Feb 1;57(2):122-129 [PMID: 34411033]
  7. Br J Radiol. 2023 Dec;96(1152):20230189 [PMID: 37750939]
  8. Med Phys. 2009 Jul;36(7):3018-27 [PMID: 19673201]
  9. AJR Am J Roentgenol. 2020 Sep;215(3):726-735 [PMID: 32755200]
  10. AJR Am J Roentgenol. 2013 Oct;201(4):W626-32 [PMID: 24059402]
  11. Radiology. 2018 Nov;289(2):293-312 [PMID: 30179101]
  12. Eur Radiol. 2022 Dec;32(12):8579-8587 [PMID: 35708838]
  13. AJNR Am J Neuroradiol. 2022 Apr;43(4):579-584 [PMID: 35332019]
  14. Eur Radiol. 2022 Oct;32(10):7079-7086 [PMID: 35689699]
  15. Rofo. 2024 Jan;196(1):25-35 [PMID: 37793417]
  16. Invest Radiol. 2022 Sep 1;57(9):620-626 [PMID: 35318968]
  17. Invest Radiol. 2019 Apr;54(4):204-211 [PMID: 30562270]
  18. J Cardiovasc Dev Dis. 2023 Aug 25;10(9): [PMID: 37754792]
  19. Eur J Radiol. 2023 Jun;163:110829 [PMID: 37080060]
  20. J Med Imaging (Bellingham). 2016 Oct;3(4):043503 [PMID: 28018936]
  21. Radiographics. 2019 May-Jun;39(3):729-743 [PMID: 31059394]
  22. Phys Med Biol. 1976 Sep;21(5):733-44 [PMID: 967922]
  23. Radiology. 2023 Jun;307(5):e223088 [PMID: 37219443]
  24. Invest Radiol. 2019 Mar;54(3):129-137 [PMID: 30461437]
  25. Phys Med Biol. 2021 Jan 29;66(3):03TR01 [PMID: 33113525]
  26. Biomed Imaging Interv J. 2007 Apr;3(2):e38 [PMID: 21614278]
  27. Sci Rep. 2019 Dec 2;9(1):18109 [PMID: 31792291]

Word Cloud

Created with Highcharts 10.0.0pediatricPCCTtomographydetectorsPhoton-countingcomputedcardiovascularimagingphotonsphoton-countingcontrastCTX-rayimagequalitysuperiorspatialresolutiondosesreducediagnosticrepresentssignificantadvancementTraditionalsystemsemployenergy-integratingconvertvisiblelightwhereasutilizesdirectlytransformelectricsignalsdirectconversionallowssortdiscreteenergylevelstherebyenhancingnoisereductionimprovedreducedartifactsapplicationsofferssubstantialbenefitsincludinglowerradiationmayhelpriskmalignancypatientsperhapsgreaterpotentialbenefitrepeatedexposureyoungageEnhancedfacilitatesbettervisualizationsmallstructuresvitaldiagnosingcongenitalheartdefectsAdditionallyPCCT'sspectralcapabilitiesimprovetissuecharacterizationenablecreationvirtualmonoenergeticimagesenhancesoft-tissuepotentiallymediaInitialclinicalresultsindicateprovidesaccuracycomparedconventionalparticularlychallengingcasestechnologymaturesresearchstandardizedprotocolswillessentialfullyintegratepracticesensuringoptimizedoutcomespatientsafetyRoleCardiovascularComputedPediatric

Similar Articles

Cited By

No available data.