Conditions for a microfluidic creep experiment for microparticles using a cross-slot extensional flow device.

Sara Ghanbarpour Mamaghani, Joanna B Dahl
Author Information
  1. Sara Ghanbarpour Mamaghani: Engineering Department, University of Massachusetts Boston, Boston, Massachusetts 02025, USA. ORCID
  2. Joanna B Dahl: Engineering Department, University of Massachusetts Boston, Boston, Massachusetts 02025, USA. ORCID

Abstract

The micromechanical measurement field has struggled to establish repeatable techniques because the deforming stresses can be difficult to model. A recent numerical study [Lu , J. Fluid Mech. , A26 (2023)] showed that viscoelastic capsules flowing through a cross-slot can achieve a quasi-steady strain near the extensional flow stagnation point that is equal to the equilibrium static strain, thereby implying that the capsule's elastic behavior can be captured in continuous device operation. However, no experimental microfluidic cross-slot studies have reported quasi-steady strains for suspended cells or particles to our knowledge. Here, we demonstrate experimentally the conditions necessary for the cross-slot microfluidic device to replicate a uniaxial creep test at the microscale and at relatively high throughput. By using large dimension cross-slots relative to the microparticle diameter, our cross-slot implementation creates an extensional flow region that is large enough for agarose hydrogel microparticles to achieve a strain plateau while dwelling near the stagnation point. This strain plateau will be key for accurately and precisely measuring viscoelastic properties of small microscale biological objects. We propose an analytical mechanical model to extract linear viscoelastic mechanical properties from observed particle strain histories. Particle image velocimetry measurements of the unperturbed velocity field is used to estimate where in the device particles experienced extensional flow and where the mechanical model might be applied to extract mechanical property measurements. Finally, we provide recommendations for applying the cross-slot microscale creep experiment to other biomaterials and criteria to identify particles that likely achieved a quasi-steady strain state.

References

  1. Lab Chip. 2014 Aug 7;14(15):2688-97 [PMID: 24836754]
  2. Phys Rev E. 2020 Jul;102(1-1):010605 [PMID: 32794982]
  3. Phys Rev Lett. 2008 Jul 25;101(4):048101 [PMID: 18764366]
  4. Soft Matter. 2023 Mar 1;19(9):1739-1748 [PMID: 36779239]
  5. Biotechnol Prog. 1990 Sep-Oct;6(5):383-90 [PMID: 1370016]
  6. Soft Matter. 2016 Apr 20;12(16):3787-96 [PMID: 26984509]
  7. J Biol Methods. 2014;1(2): [PMID: 25606571]
  8. Lab Chip. 2006 Mar;6(3):427-36 [PMID: 16511627]
  9. Biophys J. 2015 Nov 17;109(10):2023-36 [PMID: 26588562]
  10. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):21893-902 [PMID: 26816386]
  11. Lab Chip. 2024 Apr 30;24(9):2440-2453 [PMID: 38600866]
  12. Diagnostics (Basel). 2023 Apr 16;13(8): [PMID: 37189536]
  13. Biophys J. 2016 Nov 1;111(9):2039-2050 [PMID: 27806284]
  14. Proc Natl Acad Sci U S A. 2012 May 15;109(20):7630-5 [PMID: 22547795]
  15. Nat Commun. 2019 Jan 24;10(1):415 [PMID: 30679420]
  16. Biophys J. 2015 Jul 7;109(1):26-34 [PMID: 26153699]
  17. Soft Matter. 2023 Mar 15;19(11):2064-2073 [PMID: 36853279]
  18. Sci Rep. 2016 Dec 02;6:37863 [PMID: 27910869]
  19. Biophys J. 2019 Mar 19;116(6):1127-1135 [PMID: 30799072]
  20. Anal Chem. 2009 Dec 15;81(24):10049-54 [PMID: 19908852]
  21. Microsyst Nanoeng. 2017 May 08;3:17013 [PMID: 31057860]
  22. Nat Methods. 2015 Mar;12(3):199-202, 4 p following 202 [PMID: 25643151]
  23. Science. 1997 Jun 27;276(5321):2016-21 [PMID: 9197259]
  24. Nat Methods. 2020 Jun;17(6):587-593 [PMID: 32341544]
  25. Science. 2003 Sep 12;301(5639):1515-9 [PMID: 12970560]
  26. Annu Rev Biomed Eng. 2015;17:35-62 [PMID: 26194428]
  27. Annu Rev Biophys. 2024 Jul;53(1):367-395 [PMID: 38382116]
  28. Biophys J. 2017 Oct 3;113(7):1574-1584 [PMID: 28978449]
  29. Biophys J. 2020 Aug 4;119(3):493-501 [PMID: 32697978]
  30. Phys Rev Lett. 2006 Apr 14;96(14):144502 [PMID: 16712081]
  31. J Mater Chem B. 2018 Oct 21;6(39):6245-6261 [PMID: 32254615]
  32. Sci Transl Med. 2013 Nov 20;5(212):212ra163 [PMID: 24259051]

Word Cloud

Created with Highcharts 10.0.0cross-slotstrainextensionalflowdevicemechanicalcanmodelviscoelasticquasi-steadymicrofluidicparticlescreepmicroscalefieldachievenearstagnationpointusinglargemicroparticlesplateaupropertiesextractmeasurementsexperimentmicromechanicalmeasurementstruggledestablishrepeatabletechniquesdeformingstressesdifficultrecentnumericalstudy[LuJFluidMechA262023]showedcapsulesflowingequalequilibriumstatictherebyimplyingcapsule'selasticbehaviorcapturedcontinuousoperationHoweverexperimentalstudiesreportedstrainssuspendedcellsknowledgedemonstrateexperimentallyconditionsnecessaryreplicateuniaxialtestrelativelyhighthroughputdimensioncross-slotsrelativemicroparticlediameterimplementationcreatesregionenoughagarosehydrogeldwellingwillkeyaccuratelypreciselymeasuringsmallbiologicalobjectsproposeanalyticallinearobservedparticlehistoriesParticleimagevelocimetryunperturbedvelocityusedestimateexperiencedmightappliedpropertyFinallyproviderecommendationsapplyingbiomaterialscriteriaidentifylikelyachievedstateConditions

Similar Articles

Cited By