Microfluidic tools to model, monitor, and modulate the gut-brain axis.

Hyehyun Kim, Gregory Girardi, Allison Pickle, Testaverde S Kim, Erkin Seker
Author Information
  1. Hyehyun Kim: Department of Biomedical Engineering, University of California-Davis, Davis, California 95616, USA. ORCID
  2. Allison Pickle: Department of Biomedical Engineering, University of California-Davis, Davis, California 95616, USA. ORCID
  3. Testaverde S Kim: Department of Biomedical Engineering, University of California-Davis, Davis, California 95616, USA. ORCID
  4. Erkin Seker: Department of Electrical and Computer Engineering, University of California-Davis, Davis, California 95616, USA. ORCID

Abstract

The gut-brain axis (GBA) connects the gastrointestinal tract and the central nervous system (CNS) via the peripheral nervous system and humoral (e.g., circulatory and lymphatic system) routes. The GBA comprises a sophisticated interaction between various mammalian cells, gut microbiota, and systemic factors. This interaction shapes homeostatic and pathophysiological processes and plays an important role in the etiology of many disorders including neuropsychiatric conditions. However, studying the underlying processes of GBA , where numerous confounding factors exist, is challenging. Furthermore, conventional models fall short of capturing the GBA anatomy and physiology. Microfluidic platforms with integrated sensors and actuators are uniquely positioned to enhance models by representing the anatomical layout of cells and allowing to monitor and modulate the biological processes with high spatiotemporal resolution. Here, we first briefly describe microfluidic technologies and their utility in modeling the CNS, vagus nerve, gut epithelial barrier, blood-brain barrier, and their interactions. We then discuss the challenges and opportunities for each model, including the use of induced pluripotent stem cells and incorporation of sensors and actuator modalities to enhance the capabilities of these models. We conclude by envisioning research directions that can help in making the microfluidics-based GBA models better-suited to provide mechanistic insight into pathophysiological processes and screening therapeutics.

References

  1. Anal Chem. 2016 Oct 18;88(20):10019-10027 [PMID: 27617489]
  2. Anal Chem. 2009 Feb 1;81(3):1162-8 [PMID: 19178342]
  3. iScience. 2022 Jul 21;25(8):104813 [PMID: 35982785]
  4. Nat Neurosci. 2022 Sep;25(9):1149-1162 [PMID: 35953545]
  5. Nat Commun. 2017 Aug 15;8(1):262 [PMID: 28811479]
  6. Acta Neuropathol. 2020 Dec;140(6):831-849 [PMID: 33021680]
  7. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20560-5 [PMID: 23185003]
  8. Nat Neurosci. 2015 Jul;18(7):965-77 [PMID: 26030851]
  9. Signal Transduct Target Ther. 2023 May 25;8(1):217 [PMID: 37231000]
  10. Chem Rev. 2022 Apr 13;122(7):7142-7181 [PMID: 35080375]
  11. Nature. 2003 Jan 23;421(6921):384-8 [PMID: 12508119]
  12. Microsyst Nanoeng. 2023 Nov 14;9:144 [PMID: 38025883]
  13. Nat Med. 2020 Feb;26(2):289-299 [PMID: 31988461]
  14. Science. 2010 Jun 25;328(5986):1662-8 [PMID: 20576885]
  15. Cell Rep. 2015 May 26;11(8):1176-83 [PMID: 25981034]
  16. Nat Rev Immunol. 2014 Mar;14(3):141-53 [PMID: 24566914]
  17. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10539-E10547 [PMID: 30348765]
  18. ACS Biomater Sci Eng. 2021 Jul 12;7(7):2926-2948 [PMID: 34133114]
  19. Am J Physiol Cell Physiol. 2006 Feb;290(2):C427-32 [PMID: 16192299]
  20. Cell. 2016 Nov 3;167(4):915-932 [PMID: 27814521]
  21. Neuron. 2019 Aug 21;103(4):627-641.e7 [PMID: 31255487]
  22. Nat Biomed Eng. 2021 Aug;5(8):847-863 [PMID: 34385693]
  23. Front Med Technol. 2022 Sep 14;4:931411 [PMID: 36188186]
  24. Biosensors (Basel). 2023 May 31;13(6): [PMID: 37366967]
  25. Adv Mater. 2022 Apr;34(17):e2107876 [PMID: 34913206]
  26. Nat Neurosci. 2018 Jul;21(7):941-951 [PMID: 29950669]
  27. J Allergy Clin Immunol. 2009 Jul;124(1):3-20; quiz 21-2 [PMID: 19560575]
  28. Lab Chip. 2017 Jun 27;17(13):2264-2271 [PMID: 28598479]
  29. Lab Chip. 2012 Jun 21;12(12):2165-74 [PMID: 22434367]
  30. Nat Biotechnol. 2018 Oct;36(9):865-874 [PMID: 30125269]
  31. Cell Res. 2024 Nov;34(11):757-758 [PMID: 39014217]
  32. Bioelectron Med. 2024 Feb 21;10(1):3 [PMID: 38378575]
  33. Biomaterials. 2020 Jul;245:119980 [PMID: 32229330]
  34. Nat Methods. 2005 Aug;2(8):599-605 [PMID: 16094385]
  35. Nat Commun. 2016 May 11;7:11535 [PMID: 27168102]
  36. Lab Chip. 2022 Oct 11;22(20):3961-3975 [PMID: 36111641]
  37. IEEE Pulse. 2011 Nov;2(6):51-9 [PMID: 22147069]
  38. Nat Rev Gastroenterol Hepatol. 2018 Oct;15(10):625-636 [PMID: 30185916]
  39. Ann Neurol. 2012 Oct;72(4):517-24 [PMID: 23109146]
  40. Cell Prolif. 2024 Sep;57(9):e13724 [PMID: 39086147]
  41. Nat Biomed Eng. 2019 Jul;3(7):520-531 [PMID: 31086325]
  42. Cells. 2023 Mar 06;12(5): [PMID: 36899957]
  43. Science. 2024 Dec 6;386(6726):1146-1153 [PMID: 39636994]
  44. Nat Neurosci. 2020 Mar;23(3):327-336 [PMID: 32066981]
  45. Int J Mol Sci. 2023 Jun 24;24(13): [PMID: 37445748]

Grants

  1. P30 ES023513/NIEHS NIH HHS
  2. R01 EB034279/NIBIB NIH HHS
  3. R03 NS118156/NINDS NIH HHS
  4. R21 AT010933/NCCIH NIH HHS

Word Cloud

Created with Highcharts 10.0.0GBAprocessesmodelssystemcellsgut-brainaxisnervousCNSinteractiongutfactorspathophysiologicalincludingMicrofluidicsensorsenhancemonitormodulatebarriermodelconnectsgastrointestinaltractcentralviaperipheralhumoralegcirculatorylymphaticroutescomprisessophisticatedvariousmammalianmicrobiotasystemicshapeshomeostaticplaysimportantroleetiologymanydisordersneuropsychiatricconditionsHoweverstudyingunderlyingnumerousconfoundingexistchallengingFurthermoreconventionalfallshortcapturinganatomyphysiologyplatformsintegratedactuatorsuniquelypositionedrepresentinganatomicallayoutallowingbiologicalhighspatiotemporalresolutionfirstbrieflydescribemicrofluidictechnologiesutilitymodelingvagusnerveepithelialblood-braininteractionsdiscusschallengesopportunitiesuseinducedpluripotentstemincorporationactuatormodalitiescapabilitiesconcludeenvisioningresearchdirectionscanhelpmakingmicrofluidics-basedbetter-suitedprovidemechanisticinsightscreeningtherapeuticstools

Similar Articles

Cited By