Effect of dietary fibre on the gastrointestinal microbiota during critical illness: A scoping review.

Angajendra N Ghosh, Calum J Walsh, Matthew J Maiden, Tim P Stinear, Adam M Deane
Author Information
  1. Angajendra N Ghosh: Department of Intensive Care, The Northern Hospital, Epping 3076, Victoria, Australia. angaj.ghosh@nh.org.au.
  2. Calum J Walsh: Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia.
  3. Matthew J Maiden: Department of Intensive Care, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050, Victoria, Australia.
  4. Tim P Stinear: Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia.
  5. Adam M Deane: Department of Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia.

Abstract

The systemic effects of gastrointestinal (GI) microbiota in health and during chronic diseases is increasingly recognised. Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promise. While changes in dietary intake can rapidly change the GI microbiota, the impact of dietary changes during acute critical illness on the microbiota remain uncertain. Dietary fibre is metabolised by carbohydrate-active enzymes and, in health, can alter GI microbiota. The aim of this scoping review was to describe the effects of dietary fibre supplementation in health and disease states, specifically during critical illness. Randomised controlled trials and prospective cohort studies that include adults (> 18 years age) and reported changes to GI microbiota as one of the study outcomes using non-culture methods, were identified. Studies show dietary fibres have an impact on faecal microbiota in health and disease. The fibre, inulin, has a marked and specific effect on increasing the abundance of faecal Bifidobacteria. Short chain fatty acids produced by have been shown to be beneficial in other patient populations. Very few trials have evaluated the effect of dietary fibre on the GI microbiota during critical illness. More research is necessary to establish optimal fibre type, doses, duration of intervention in critical illness.

Keywords

References

  1. Int J Environ Res Public Health. 2020 Oct 19;17(20): [PMID: 33086688]
  2. J Anim Sci. 1997 Sep;75(9):2453-62 [PMID: 9303464]
  3. Br J Nutr. 2004 Sep;92(3):521-6 [PMID: 15469657]
  4. PLoS One. 2016 Jul 13;11(7):e0159236 [PMID: 27410967]
  5. Br J Nutr. 2010 Oct;104(7):1007-17 [PMID: 20591206]
  6. Br J Nutr. 2005 Apr;93 Suppl 1:S13-25 [PMID: 15877886]
  7. Am J Gastroenterol. 2000 Apr;95(4):1017-20 [PMID: 10763953]
  8. Rev Bras Ter Intensiva. 2018 Jul-Sept;30(3):358-365 [PMID: 30328989]
  9. Cell Host Microbe. 2015 May 13;17(5):553-64 [PMID: 25974298]
  10. Nutrients. 2020 Jan 22;12(2): [PMID: 31979019]
  11. JPEN J Parenter Enteral Nutr. 2020 Mar;44(3):463-471 [PMID: 31385326]
  12. Clin Exp Pharmacol Physiol. 2020 Jun;47(6):927-939 [PMID: 31894861]
  13. Gastroenterology. 2017 Jul;153(1):87-97.e3 [PMID: 28396144]
  14. Food Funct. 2022 Feb 21;13(4):2068-2082 [PMID: 35107113]
  15. J Ren Nutr. 2021 Sep;31(5):512-522 [PMID: 34120835]
  16. J Nutr. 1997 Jan;127(1):130-6 [PMID: 9040556]
  17. Nat Rev Microbiol. 2016 Jan;14(1):20-32 [PMID: 26499895]
  18. Life Sci. 2018 Dec 1;214:153-157 [PMID: 30385177]
  19. Br J Nutr. 2012 Dec 28;108(12):2229-42 [PMID: 22370444]
  20. World J Gastrointest Pathophysiol. 2011 Dec 15;2(6):138-45 [PMID: 22180847]
  21. BMC Microbiol. 2020 Sep 14;20(1):283 [PMID: 32928123]
  22. Crit Care Explor. 2020 Jun 11;2(6):e0135 [PMID: 32695998]
  23. Biochem J. 1965 Apr;95:41-7 [PMID: 14333566]
  24. Obes Res. 2005 Jun;13(6):1000-7 [PMID: 15976142]
  25. Dig Dis Sci. 2020 Mar;65(3):723-740 [PMID: 32060812]
  26. Gut. 2017 Nov;66(11):1968-1974 [PMID: 28213610]
  27. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  28. Adv Nutr. 2022 Dec 22;13(6):2237-2276 [PMID: 36041173]
  29. J Nutr. 1999 Jul;129(7 Suppl):1402S-6S [PMID: 10395607]
  30. Nutrients. 2022 Feb 14;14(4): [PMID: 35215453]
  31. Obesity (Silver Spring). 2010 Jan;18(1):190-5 [PMID: 19498350]
  32. J Nutr. 2023 Apr;153(4):1178-1188 [PMID: 36841667]
  33. Circ Res. 2020 Jul 31;127(4):553-570 [PMID: 32762536]
  34. J Nutr. 2012 Mar;142(3):470-7 [PMID: 22298569]
  35. J Nutr. 2015 Sep;145(9):2025-32 [PMID: 26203099]
  36. Adv Nutr. 2022 Mar;13(2):492-529 [PMID: 34555168]
  37. Microbiol Spectr. 2017 Sep;5(5): [PMID: 28936943]
  38. J Adv Res. 2019 Mar 23;19:105-112 [PMID: 31341676]
  39. Science. 2011 Oct 7;334(6052):105-8 [PMID: 21885731]
  40. Am J Clin Nutr. 2021 Jun 1;113(6):1515-1530 [PMID: 33693499]
  41. J Appl Microbiol. 2007 Feb;102(2):452-60 [PMID: 17241351]
  42. EBioMedicine. 2019 Aug;46:473-485 [PMID: 31375426]
  43. Diabetes. 2006 May;55(5):1484-90 [PMID: 16644709]
  44. Gut Microbes. 2020 Nov 9;12(1):1704141 [PMID: 31983281]
  45. PLoS One. 2018 Aug 1;13(8):e0200322 [PMID: 30067768]
  46. Microbiome. 2015 Jul 30;3:31 [PMID: 26229597]
  47. Crit Rev Food Sci Nutr. 2023 Nov;63(33):12018-12035 [PMID: 35833477]
  48. Eur J Nutr. 2020 Oct;59(7):3325-3338 [PMID: 32440730]
  49. PLoS Comput Biol. 2012;8(12):e1002808 [PMID: 23300406]
  50. J Nutr. 2000 May;130(5):1314-9 [PMID: 10801936]
  51. J Transl Med. 2022 Dec 14;20(1):599 [PMID: 36517799]
  52. Am J Clin Nutr. 2012 Aug;96(2):325-31 [PMID: 22743314]
  53. Cell Metab. 2014 Nov 4;20(5):779-786 [PMID: 25156449]
  54. Nutr J. 2014 Apr 12;13:34 [PMID: 24725724]
  55. J Nutr. 2015 Feb;145(2):215-21 [PMID: 25644340]
  56. Nutr Res. 2008 May;28(5):329-34 [PMID: 19083428]
  57. Nutrients. 2019 Sep 12;11(9): [PMID: 31547291]
  58. mSphere. 2021 Aug 25;6(4):e0019121 [PMID: 34287003]
  59. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502 [PMID: 28611480]
  60. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 [PMID: 16332807]
  61. Int J Obes (Lond). 2008 Nov;32(11):1720-4 [PMID: 18779823]
  62. Front Microbiol. 2016 Jun 15;7:925 [PMID: 27379055]
  63. Nutrients. 2020 Jan 31;12(2): [PMID: 32023943]
  64. ISME J. 2011 Feb;5(2):169-72 [PMID: 20827291]
  65. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  66. Br J Nutr. 1999 Nov;82(5):375-82 [PMID: 10673910]
  67. J Food Sci. 2011 Jun-Jul;76(5):H137-42 [PMID: 22417432]
  68. Nutr J. 2012 Jun 01;11:36 [PMID: 22657950]
  69. Br J Nutr. 2008 Jan;99(1):110-20 [PMID: 17761020]
  70. Clin Nutr. 2014 Dec;33(6):966-72 [PMID: 24290345]
  71. Int J Mol Sci. 2022 Aug 24;23(17): [PMID: 36076980]
  72. Br J Nutr. 2016 Oct;116(8):1356-1368 [PMID: 27719686]
  73. Br J Nutr. 2005 Apr;93 Suppl 1:S157-61 [PMID: 15877889]
  74. Gut. 2022 May;71(5):1020-1032 [PMID: 35105664]
  75. Nutrients. 2021 May 26;13(6): [PMID: 34073366]
  76. Nutrients. 2020 Mar 23;12(3): [PMID: 32210176]
  77. Clin Nutr. 2020 Jan;39(1):67-79 [PMID: 30827722]
  78. Nutrients. 2022 Jun 21;14(13): [PMID: 35807739]
  79. J Nutr. 2005 Aug;135(8):1896-902 [PMID: 16046714]
  80. J Nutr. 2017 Nov;147(11):2067-2075 [PMID: 28954842]
  81. Science. 2018 Mar 9;359(6380):1151-1156 [PMID: 29590046]
  82. Nutrients. 2017 May 24;9(6): [PMID: 28538698]

Word Cloud

Created with Highcharts 10.0.0microbiotafibreGIdietarycriticalillnesshealthDietarychangeseffectsgastrointestinalchronicdiseasescanimpactscopingreviewdiseasetrialsfaecaleffectShortchainfattyacidssystemicincreasinglyrecognisedstrategiesmodulatedemonstratedpromiseintakerapidlychangeacuteremainuncertainmetabolisedcarbohydrate-activeenzymesalteraimdescribesupplementationstatesspecificallyRandomisedcontrolledprospectivecohortstudiesincludeadults>18yearsagereportedonestudyoutcomesusingnon-culturemethodsidentifiedStudiesshowfibresinulinmarkedspecificincreasingabundanceBifidobacteriaproducedshownbeneficialpatientpopulationsevaluatedresearchnecessaryestablishoptimaltypedosesdurationinterventionEffectillness:CriticalGastrointestinalHealth

Similar Articles

Cited By

No available data.