Exploring the Exclusive Isolation of Pseudomonas syringae in Peltigera Lichens via Metabolite Analysis and Growth Assays.

Natalia Ram��rez, Diana Vinchira-Villarraga, Mojgan Rabiey, Margr��t Au��ur Sigurbj��rnsd��ttir, Starri Heidmarsson, Oddur Vilhelmsson, Robert W Jackson
Author Information
  1. Natalia Ram��rez: Department of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland. ORCID
  2. Diana Vinchira-Villarraga: School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK. ORCID
  3. Mojgan Rabiey: School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK. ORCID
  4. Margr��t Au��ur Sigurbj��rnsd��ttir: Department of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland. ORCID
  5. Starri Heidmarsson: Northwest Iceland Nature Research Centre, Sau����rkr��kur, Iceland. ORCID
  6. Oddur Vilhelmsson: Department of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland. ORCID
  7. Robert W Jackson: School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK. ORCID

Abstract

The specific association of the potentially plant-pathogenic Pseudomonas syringae with Peltigera lichens raises questions about the factors driving this host specificity. To explore this, the metabolic profile of seven lichen species belonging to three genera (Cladonia, Peltigera and Stereocaulon) was analysed using LC-MSMS. In addition, we assessed the growth of P. syringae strains in media supplemented with extracts from each lichen species. This revealed that Peltigera exhibits lower metabolite richness compared to other genera, but shows a higher chemical investment in specific compounds. Growth kinetics showed comparable P. syringae growth across lichen-supplemented media, except for Cladonia arbuscula and Cladonia sp., where the former exhibited lower growth rates. Inhibition assays with lichen extracts showed no inhibition of P. syringae. The lichen metabolome is predominantly composed of lipids and organic acids. Furthermore, specific compounds, such as aminoglycosides, may facilitate P. syringae presence in Peltigera by inhibiting Bacillus subtilis and other antagonists. In addition, compounds absent in Peltigera, like anthracene, might serve as a carbon source inhibitor like Bacillus velezensis.

Keywords

References

  1. Chem Soc Rev. 2018 Mar 5;47(5):1730-1760 [PMID: 29094129]
  2. Nat Ecol Evol. 2018 Jun;2(6):983-990 [PMID: 29760441]
  3. J Chem Ecol. 2005 Dec;31(12):2975-91 [PMID: 16365718]
  4. J Lab Clin Med. 1954 Aug;44(2):301-7 [PMID: 13184240]
  5. Mol Plant Microbe Interact. 2011 Oct;24(10):1207-19 [PMID: 21649511]
  6. J Microbiol Biotechnol. 2021 Jul 28;31(7):999-1010 [PMID: 34024889]
  7. Annu Rev Microbiol. 2004;58:273-301 [PMID: 15487939]
  8. Biochemistry (Mosc). 1999 Jan;64(1):61-5 [PMID: 9986914]
  9. J Nat Prod. 1990 Nov-Dec;53(6):1575-7 [PMID: 2089124]
  10. Mol Plant Pathol. 2002 Sep 1;3(5):371-90 [PMID: 20569344]
  11. Carbohydr Polym. 2012 Nov 6;90(4):1779-85 [PMID: 22944447]
  12. Plant J. 2013 Sep;75(6):891-902 [PMID: 23763788]
  13. Mol Plant Pathol. 2005 Nov 1;6(6):629-39 [PMID: 20565685]
  14. Pathogens. 2022 Mar 15;11(3): [PMID: 35335680]
  15. J Nat Prod. 2021 Nov 26;84(11):2795-2807 [PMID: 34662515]
  16. Nat Biotechnol. 2012 Oct;30(10):918-20 [PMID: 23051804]
  17. Environ Microbiol Rep. 2011 Aug;3(4):434-42 [PMID: 23761305]
  18. J Phycol. 2015 Jun;51(3):507-27 [PMID: 26986666]
  19. Mol Phylogenet Evol. 2004 Oct;33(1):43-55 [PMID: 15324838]
  20. Appl Environ Microbiol. 2010 Aug;76(16):5363-72 [PMID: 20562275]
  21. Microb Ecol. 2021 May;81(4):965-976 [PMID: 33404820]
  22. Prog Lipid Res. 1992;31(4):373-97 [PMID: 1304049]
  23. Nat Methods. 2019 Apr;16(4):299-302 [PMID: 30886413]
  24. Chem Phys Lipids. 2015 Sep;190:27-42 [PMID: 26148574]
  25. Molecules. 2019 Mar 16;24(6): [PMID: 30884857]
  26. Mar Drugs. 2022 Jun 15;20(6): [PMID: 35736200]
  27. J Cheminform. 2016 Nov 4;8:61 [PMID: 27867422]
  28. Nat Biotechnol. 2023 Apr;41(4):447-449 [PMID: 36859716]
  29. Z Naturforsch C J Biosci. 2013 May-Jun;68(5-6):191-7 [PMID: 23923615]
  30. Cold Spring Harb Perspect Med. 2016 Jun 01;6(6): [PMID: 27252397]
  31. Chemosphere. 2011 Feb;82(7):1030-7 [PMID: 21094972]
  32. Z Naturforsch C J Biosci. 2010 Mar-Apr;65(3-4):157-73 [PMID: 20469633]
  33. FEMS Microbiol Lett. 2014 Apr;353(1):57-62 [PMID: 24571086]
  34. Science. 2016 Jul 29;353(6298):488-92 [PMID: 27445309]
  35. J Proteome Res. 2017 Jun 2;16(6):2160-2173 [PMID: 28290203]
  36. ISME J. 2017 Jul;11(7):1722-1726 [PMID: 28350392]
  37. Toxicol Rep. 2018 Nov 03;5:1120-1123 [PMID: 30510904]
  38. Z Naturforsch C J Biosci. 2000 Nov-Dec;55(11-12):890-7 [PMID: 11204192]
  39. FEMS Microbiol Ecol. 2006 Sep;57(3):484-95 [PMID: 16907761]
  40. Plant Physiol. 1991 Dec;97(4):1342-7 [PMID: 16668554]
  41. Molecules. 2022 Apr 06;27(7): [PMID: 35408757]
  42. Planta. 2003 Sep;217(5):767-75 [PMID: 12712338]
  43. Plant Physiol. 1975 Apr;55(4):731-3 [PMID: 16659156]
  44. mSystems. 2016 Dec 20;1(6): [PMID: 28028548]
  45. Clin Microbiol Infect. 2014 Apr;20(4):O255-66 [PMID: 24131428]
  46. Antioxid Redox Signal. 2015 Mar 20;22(9):785-96 [PMID: 25557512]
  47. Environ Microbiol. 2023 Dec;25(12):3502-3511 [PMID: 37658725]
  48. Sci Rep. 2015 Jul 13;5:12064 [PMID: 26165168]
  49. Trends Plant Sci. 2022 Feb;27(2):180-190 [PMID: 34620547]
  50. Plants (Basel). 2023 May 09;12(10): [PMID: 37653845]

Grants

  1. 1908-0151/Rann��s

MeSH Term

Lichens
Pseudomonas syringae
Metabolome
Ascomycota
Bacillus
Chromatography, Liquid

Word Cloud

Created with Highcharts 10.0.0syringaePeltigeralichenPspecificPseudomonasCladoniagrowthcompoundsspeciesgeneraadditionmediaextractslowermetaboliteGrowthkineticsshowedinhibitionBacilluslikeassociationpotentiallyplant-pathogeniclichensraisesquestionsfactorsdrivinghostspecificityexploremetabolicprofilesevenbelongingthreeStereocaulonanalysedusingLC-MSMSassessedstrainssupplementedrevealedexhibitsrichnesscomparedshowshigherchemicalinvestmentcomparableacrosslichen-supplementedexceptarbusculaspformerexhibitedratesInhibitionassaysmetabolomepredominantlycomposedlipidsorganicacidsFurthermoreaminoglycosidesmayfacilitatepresenceinhibitingsubtilisantagonistsabsentanthracenemightservecarbonsourceinhibitorvelezensisExploringExclusiveIsolationLichensviaMetaboliteAnalysisAssaysLC/MSuntargetedmetabolomics

Similar Articles

Cited By