Distinct Patterns of Antibiotic Sensitivities in Ammonia-Oxidising Archaea.

Timothy Klein, Logan H Hodgskiss, Max Dreer, J Colin Murrell, Matthew I Hutchings, Christa Schleper, Laura E Lehtovirta-Morley
Author Information
  1. Timothy Klein: School of Biological Sciences, University of East Anglia, Norwich, UK.
  2. Logan H Hodgskiss: Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria.
  3. Max Dreer: Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria.
  4. J Colin Murrell: School of Environmental Sciences, University of East Anglia, Norwich, UK.
  5. Matthew I Hutchings: Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
  6. Christa Schleper: Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria.
  7. Laura E Lehtovirta-Morley: School of Biological Sciences, University of East Anglia, Norwich, UK. ORCID

Abstract

Ammonia-oxidising archaea (AOA) are important microorganisms contributing towards the nitrogen flux in the environment. Unlike archaea from other major phyla, genetic tools are yet to be developed for the AOA, and identification of antibiotic resistance markers for selecting mutants is required for a genetic system. The aim of this study was to test the effects of selected antibiotics (hygromycin B, neomycin, apramycin, puromycin, novobiocin) on pure cultures of three well studied AOA strains, 'Candidatus Nitrosocosmicus franklandianus C13', Nitrososphaera viennensis EN76 and Nitrosopumilus maritimus SCM1. Puromycin, hygromycin B and neomycin inhibited some but not all tested archaeal strains. All strains were resistant to apramycin and inhibited by novobiocin to various degrees. As N. viennensis EN76 was relatively more resistant to the tested antibiotics, a wider range of concentrations and compounds (chloramphenicol, trimethoprim, statins) was tested against this strain. N. viennensis EN76 was inhibited by trimethoprim, but not by chloramphenicol, and growth recovered within days in the presence of simvastatin, suggesting either degradation of, or spontaneous resistance against, this compound. This study highlights the physiological differences between different genera of AOA and has identified new candidate antibiotics for selective enrichment and the development of selectable markers for genetic systems in AOA.

Keywords

References

  1. BMC Biotechnol. 2022 Oct 11;22(1):29 [PMID: 36221128]
  2. Antimicrob Agents Chemother. 2009 Oct;53(10):4429-32 [PMID: 19687239]
  3. Archaea. 2018 Sep 13;2018:8429145 [PMID: 30302054]
  4. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8239-44 [PMID: 24843170]
  5. Mol Biol Evol. 2022 Aug 3;39(8): [PMID: 35811376]
  6. Front Microbiol. 2018 Feb 02;9:116 [PMID: 29456526]
  7. Nat Microbiol. 2021 Jul;6(7):946-959 [PMID: 34155373]
  8. Curr Top Med Chem. 2003;3(3):283-303 [PMID: 12570764]
  9. Appl Environ Microbiol. 1996 Nov;62(11):4233-7 [PMID: 8900017]
  10. Q Rev Biophys. 2008 Feb;41(1):41-101 [PMID: 18755053]
  11. J Antimicrob Chemother. 2011 Sep;66(9):2038-44 [PMID: 21680581]
  12. J Bacteriol. 1998 Feb;180(3):457-63 [PMID: 9457844]
  13. Appl Environ Microbiol. 2010 Dec;76(23):7691-8 [PMID: 20889792]
  14. Appl Environ Microbiol. 2012 Jan;78(2):568-74 [PMID: 22081574]
  15. Front Microbiol. 2019 Apr 24;10:875 [PMID: 31105671]
  16. Nature. 2013 Dec 12;504(7479):231-6 [PMID: 24336283]
  17. Aquat Toxicol. 2016 May;174:1-9 [PMID: 26896816]
  18. Gene. 1994 Aug 19;146(1):117-21 [PMID: 8063095]
  19. J Genet Genomics. 2011 Jun 20;38(6):261-9 [PMID: 21703550]
  20. Nature. 2024 Jun;630(8015):230-236 [PMID: 38811725]
  21. Mol Biotechnol. 2011 May;48(1):7-14 [PMID: 20972648]
  22. FEMS Microbiol Ecol. 2016 May;92(5):fiw057 [PMID: 26976843]
  23. Chembiochem. 2003 Oct 6;4(10):1078-88 [PMID: 14523926]
  24. FEMS Microbiol Lett. 2022 May 5;369(1): [PMID: 35323924]
  25. Int J Syst Evol Microbiol. 2017 Dec;67(12):5067-5079 [PMID: 29034851]
  26. Sci Rep. 2016 Oct 06;6:34639 [PMID: 27708407]
  27. Curr Microbiol. 1995 Dec;31(6):365-71 [PMID: 8528008]
  28. Microbiology (Reading). 2012 Jun;158(Pt 6):1513-1522 [PMID: 22461488]
  29. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21206-11 [PMID: 22158986]
  30. Microbiol Resour Announc. 2019 Oct 3;8(40): [PMID: 31582432]
  31. FEMS Microbiol Ecol. 2014 Jun;88(3):495-502 [PMID: 24606542]
  32. J Bacteriol. 2007 Apr;189(7):2683-91 [PMID: 17259314]
  33. J Bacteriol. 2011 Mar;193(5):1191-200 [PMID: 21169486]
  34. Gene. 1983 Nov;25(2-3):179-88 [PMID: 6319235]
  35. Annu Rev Biochem. 2001;70:369-413 [PMID: 11395412]
  36. FEMS Microbiol Ecol. 2014 Sep;89(3):542-52 [PMID: 24909965]
  37. Environ Microbiol. 2009 Feb;11(2):446-56 [PMID: 19196275]
  38. Nat Rev Microbiol. 2008 Mar;6(3):245-52 [PMID: 18274537]
  39. Antimicrob Agents Chemother. 2001 Sep;45(9):2414-9 [PMID: 11502507]
  40. Front Microbiol. 2018 Jan 26;9:28 [PMID: 29434576]
  41. Cold Spring Harb Perspect Med. 2016 Jun 01;6(6): [PMID: 27252397]
  42. Extremophiles. 2001 Jun;5(3):153-9 [PMID: 11453458]
  43. Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2738-2752 [PMID: 24907263]
  44. FEMS Microbiol Ecol. 2008 Mar;63(3):309-15 [PMID: 18205815]
  45. Nature. 2005 Sep 22;437(7058):543-6 [PMID: 16177789]
  46. Antimicrob Agents Chemother. 2010 Jul;54(7):2787-92 [PMID: 20385868]
  47. Appl Environ Microbiol. 1988 Mar;54(3):734-40 [PMID: 3132099]
  48. J Bacteriol. 1990 Feb;172(2):756-61 [PMID: 2105303]
  49. Nature. 2001 Jan 25;409(6819):507-10 [PMID: 11206545]
  50. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5478-82 [PMID: 2748598]
  51. Appl Environ Microbiol. 2012 Jul;78(13):4669-76 [PMID: 22544252]
  52. Archaea. 2012;2012:973743 [PMID: 22851906]
  53. Front Microbiol. 2017 Dec 22;8:2597 [PMID: 29312266]
  54. EMBO J. 2003 Jan 2;22(1):151-63 [PMID: 12505993]
  55. Clin Microbiol Infect. 2012 Sep;18(9):841-8 [PMID: 22748132]
  56. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5 [PMID: 21525411]
  57. mBio. 2021 Feb 9;12(1): [PMID: 33563840]
  58. J Bacteriol. 1987 Jun;169(6):2730-8 [PMID: 3034867]
  59. RNA. 2008 Aug;14(8):1590-9 [PMID: 18567815]
  60. Front Microbiol. 2021 May 25;12:661411 [PMID: 34113328]
  61. J AOAC Int. 2005 Nov-Dec;88(6):1631-6 [PMID: 16526443]
  62. Front Microbiol. 2012 Oct 02;3:337 [PMID: 23060865]
  63. Extremophiles. 2009 Jul;13(4):735-46 [PMID: 19513584]
  64. Mol Gen Genet. 1990 Apr;221(2):273-9 [PMID: 2196433]
  65. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2976-2981 [PMID: 28265068]
  66. Microbiol Spectr. 2022 Dec 21;10(6):e0184522 [PMID: 36445127]
  67. Int J Syst Evol Microbiol. 2019 Jul;69(7):1892-1902 [PMID: 30938665]
  68. Trends Biochem Sci. 2000 Jan;25(1):24-8 [PMID: 10637609]
  69. Appl Environ Microbiol. 1994 Mar;60(3):903-7 [PMID: 16349218]
  70. Environ Evid. 2022 May 12;11(1):18 [PMID: 39294802]
  71. Appl Environ Microbiol. 2014 Apr;80(7):2299-306 [PMID: 24487541]
  72. J Bacteriol. 1998 Jun;180(12):3237-40 [PMID: 9620978]
  73. ISME J. 2024 Jan 8;18(1): [PMID: 39244747]
  74. J Biol Chem. 1994 Nov 4;269(44):27663-9 [PMID: 7961685]
  75. Int J Antimicrob Agents. 2017 Feb;49(2):176-182 [PMID: 27955920]

Grants

  1. ActionR 101079299/HORIZON EUROPE European Research Council
  2. UNITY 852993/European Research Council
  3. W1257/Austrian Science Fund
  4. NE/S007334/1/Natural Environment Research Council
  5. DH150187/Royal Society

MeSH Term

Anti-Bacterial Agents
Archaea
Ammonia
Oxidation-Reduction
Microbial Sensitivity Tests

Chemicals

Anti-Bacterial Agents
Ammonia

Word Cloud

Created with Highcharts 10.0.0AOAgeneticantibioticsarchaeastrainsviennensisEN76inhibitedtestedresistancemarkerssystemstudyhygromycinBneomycinapramycinnovobiocinresistantNchloramphenicoltrimethoprimselectiveenrichmentAmmonia-oxidisingimportantmicroorganismscontributingtowardsnitrogenfluxenvironmentUnlikemajorphylatoolsyetdevelopedidentificationantibioticselectingmutantsrequiredaimtesteffectsselectedpuromycinpureculturesthreewellstudied'CandidatusNitrosocosmicusfranklandianusC13'NitrososphaeraNitrosopumilusmaritimusSCM1PuromycinarchaealvariousdegreesrelativelywiderrangeconcentrationscompoundsstatinsstraingrowthrecoveredwithindayspresencesimvastatinsuggestingeitherdegradationspontaneouscompoundhighlightsphysiologicaldifferencesdifferentgeneraidentifiednewcandidatedevelopmentselectablesystemsDistinctPatternsAntibioticSensitivitiesAmmonia-OxidisingArchaeaammonia���oxidisinginhibition

Similar Articles

Cited By