Does helmet CPAP reduce carotid flow compared to oronasal mask CPAP? A randomized cross-over trial in healthy subjects.
Andrea Duca, Laura Frosio, Luca Molinero, Andrea Finazzi, Ivan Oppedisano, Carlo Bellazzi, Giovanni Nattino, Fabiola Signorini, Guido Bertolini, Eugenia Belotti, Roberto Cosentini
Author Information
Andrea Duca: Agenzia Regionale Emergenza Urgenza, Milan, Italy. a.duca@areu.lombardia.it. ORCID
Laura Frosio: ASST Papa Giovanni XXIII, Bergamo, Italy.
Luca Molinero: ASST Papa Giovanni XXIII, Bergamo, Italy.
Andrea Finazzi: ASST Papa Giovanni XXIII, Bergamo, Italy.
Ivan Oppedisano: ASST Papa Giovanni XXIII, Bergamo, Italy.
Carlo Bellazzi: ASST Papa Giovanni XXIII, Bergamo, Italy.
Giovanni Nattino: Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
Fabiola Signorini: Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
Guido Bertolini: Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
Eugenia Belotti: ASST Papa Giovanni XXIII, Bergamo, Italy.
Roberto Cosentini: ASST Papa Giovanni XXIII, Bergamo, Italy.
This study aimed to assess whether delivering Continuous Positive Airway Pressure (CPAP) through a Helmet interface (H-CPAP) reduces common carotid artery flow (CCAF), compared to breathing room air (RA) or using an oronasal mask (M-CPAP). This trial is an unblinded, randomized, controlled crossover trial. The primary outcome was CCAF, measured using Doppler ultrasound. The secondary outcome was mean arterial pressure (MAP). A convenient sample of adult healthy volunteers was enrolled. Subjects were enrolled and randomized to receive either H-CPAP or M-CPAP first at +���10 cmHO, followed by the alternate intervention, each for 5 min. CCAF, mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), oxygen saturation (SpO���), and anxiety score (AS) were recorded at baseline (RA) and after 5 min under each CPAP condition. Results showed a significant 14% reduction in CCAF between RA and H-CPAP (p���=���0.001) and a 13% reduction between M-CPAP and H-CPAP (p���=���0.004), with no significant difference between RA and M-CPAP. MAP remained unchanged across treatments, suggesting that the reduction in cerebral perfusion observed with H-CPAP was independent of systemic blood pressure changes. Helmet CPAP significantly reduces CCAF compared to RA and M-CPAP. While H-CPAP may offer advantages in respiratory support, its effect on cerebral perfusion suggests caution in patients with impaired cerebral autoregulation, such as those with stroke.
Brusasco C et al (2023) The use of continuous positive airway pressure during the second and third waves of the COVID-19 pandemic. ERJ Open Res. https://doi.org/10.1183/23120541.00365-2022
[DOI: 10.1183/23120541.00365-2022]
Luecke T, Pelosi P (2005) Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. https://doi.org/10.1186/cc3877
[DOI: 10.1186/cc3877]
Chac��n-Aponte AA et al (2022) Brain-lung interaction: a vicious cycle in traumatic brain injury. Korean Soc Crit Care Med. https://doi.org/10.4266/ACC.2021.01193
[DOI: 10.4266/ACC.2021.01193]
Boone MD et al (2017) The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care 26(2):174���181. https://doi.org/10.1007/s12028-016-0328-9
[DOI: 10.1007/s12028-016-0328-9]
Barea-Mendoza JA et al (2024) Effects of PEEP on intracranial pressure in patients with acute brain injury: an observational, prospective and multicenter study. Med Intensiva 48(10):594���601. https://doi.org/10.1016/j.medin.2024.04.011
[DOI: 10.1016/j.medin.2024.04.011]
Georgiadis D, Schwarz S, Baumgartner RW, et al (2001) Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke 32(9):2088���2092. https://doi.org/10.1161/hs0901.095406
Yiallourou TI et al (2013) The effect of continuous positive airway pressure on total cerebral blood flow in healthy awake volunteers. Sleep Breath 17(1):289���296. https://doi.org/10.1007/s11325-012-0688-0
[DOI: 10.1007/s11325-012-0688-0]
Zunino G, Battaglini D, Godoy DA (2024) Effects of positive end-expiratory pressure on intracranial pressure, cerebral perfusion pressure, and brain oxygenation in acute brain injury: friend or foe? A scoping review. J Intensive Med 4(2):247���260. https://doi.org/10.1016/j.jointm.2023.08.001
[DOI: 10.1016/j.jointm.2023.08.001]
Chaudhuri D et al (2022) Helmet noninvasive ventilation compared to facemask noninvasive ventilation and high-flow nasal cannula in acute respiratory failure: a systematic review and meta-analysis. Eur Respir Soc. https://doi.org/10.1183/13993003.01269-2021
[DOI: 10.1183/13993003.01269-2021]
Scheel P, Ruge C, Petruch UR, Sch��ning M (2000) Color duplex measurement of cerebral blood flow volume in healthy adults. Stroke 31(1):147���150. https://doi.org/10.1161/01.str.31.1.147
Bo��njak R, Korda�� M (2002) Circulatory effects of internal jugular vein compression: a computer simulation study. Med Biol Eng Comput 40(4):423���431. https://doi.org/10.1007/BF02345075
[DOI: 10.1007/BF02345075]
Dinsmore M, Hajat Z, Brenna CTA, Fisher J, Venkatraghavan L (2022) Effect of a neck collar on brain turgor: a potential role in preventing concussions? Br J Sports Med 56(11):605���607. https://doi.org/10.1136/BJSPORTS-2021-103961
[DOI: 10.1136/BJSPORTS-2021-103961]
Fan JL et al (2022) Integrative cerebral blood flow regulation in ischemic stroke. SAGE Publications Ltd. https://doi.org/10.1177/0271678X211032029
[DOI: 10.1177/0271678X211032029]
Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769���774. https://doi.org/10.3171/JNS.1982.57.6.0769
[DOI: 10.3171/JNS.1982.57.6.0769]
Pierrakos C et al (2013) Transcranial doppler assessment of cerebral perfusion in critically ill septic patients: a pilot study. Ann Intensive Care 3(1):28���28. https://doi.org/10.1186/2110-5820-3-28
[DOI: 10.1186/2110-5820-3-28]
Schoning M, Walter J, Scheel P (1994) Estimation of cerebral blood flow through color duplex sonography of the carotid and vertebral arteries in healthy adults. Stroke 25(1):17���22. https://doi.org/10.1161/01.STR.25.1.17
[DOI: 10.1161/01.STR.25.1.17]
Chu BC, Narita A, Aoki K, Yoshida T, Warabi T, Miyasaka K (2000) Flow volume in the common carotid artery detected by color duplex sonography: an approach to the normal value and predictability of cerebral blood flow. Radiat Med 18(4):239���244
[PMID: 11246999]
Ratanakorn D, Greenberg JP, Meads DB, Tegeler CH (2001) Middle cerebral artery flow velocity correlates with common carotid artery volume flow rate after CO2 inhalation. J Neuroimaging 11(4):401���405. https://doi.org/10.1111/j.1552-6569.2001.tb00069.x
[DOI: 10.1111/j.1552-6569.2001.tb00069.x]
R Core Team (2023) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. < https://www.R-project.org/ . Accessed 04 Nov 2024
Ma IWY et al (2017) Correlation of carotid blood flow and corrected carotid flow time with invasive cardiac output measurements. Crit Ultrasound J. https://doi.org/10.1186/s13089-017-0065-0
[DOI: 10.1186/s13089-017-0065-0]
Blanco P (2015) Volumetric blood flow measurement using Doppler ultrasound: concerns about the technique. Springer Science+Business Media. https://doi.org/10.1007/s40477-015-0164-3
[DOI: 10.1007/s40477-015-0164-3]
Van den Bergh O, Zaman J, Bresseleers J, Verhamme P, Van Diest I (2013) Anxiety, pCO2 and cerebral blood flow. Int J Psychophysiol 89(1):72���77. https://doi.org/10.1016/j.ijpsycho.2013.05.011
[DOI: 10.1016/j.ijpsycho.2013.05.011]
Ringelstein EB, Sievers C, Ecker S, et al (1988) Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 19(8):963���969. https://doi.org/10.1161/01.str.19.8.963
Battisti-Charbonney A, Fisher J, Duffin J (2011) The cerebrovascular response to carbon dioxide in humans. J Physiol 589(12):3039���3048. https://doi.org/10.1113/jphysiol.2011.206052
[DOI: 10.1113/jphysiol.2011.206052]
Marik PE, Levitov A, Young A, Andrews L (2013) The use of bioreactance and carotid doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest 143(2):364���370. https://doi.org/10.1378/chest.12-1274
[DOI: 10.1378/chest.12-1274]