A New Method Using the Four-Chamber View to Identify Fetuses With Subsequently Confirmed Postnatal Aortic Coarctation.

Greggory R DeVore, Bettina Cuneo, Gary Satou, Mark Sklansky
Author Information
  1. Greggory R DeVore: Fetal Diagnostic Centers of Pasadena, Tarzana, and Lancaster, Pasadena, California, USA. ORCID
  2. Bettina Cuneo: University of Arizona College of Medicine, Tucson, Arizona, USA.
  3. Gary Satou: Division of Pediatric Cardiology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
  4. Mark Sklansky: Division of Pediatric Cardiology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

Abstract

OBJECTIVE: To determine the sensitivity, specificity, and false-positive rate among fetuses suspected prenatally to have coarctation of the aorta (CoA) using size and shape measurements of the fetal heart from the four-chamber view (4CV).
METHODS: This was a retrospective study of 108 fetuses identified by pediatric cardiologists to be at risk for CoA. 4CV s from the last antenatal ultrasound performed by the cardiologists were analyzed. The end-diastolic area was computed using the point-to-point trace method around the epicardial border of the 4CV, and the largest end-diastolic length and width were measured from the epicardium to the epicardium to compute the global sphericity index (GSI) (length/width). Using speckle tracking analysis, the ventricular end-diastolic area, length, basal and mid-chamber widths were measured. The sphericity index of the base and mid-chamber of the ventricles was computed (length/width). In addition, the end-diastolic area ratios were computed as follows: right ventricular area/4CV area and the left ventricular area/4CV area. The z-scores for the above measurements were computed. Using logistic regression analysis, coefficients for predicting the probability of CoA from a test group of 27 fetuses with CoA and 27 without CoA was done. The logistic regression equation derived from the test group was applied to a validation group of 27 fetuses with CoA and 27 fetuses without CoA.
RESULTS: The regression equation from the test group identified the following end-diastolic measurements: 4CV GSI, RV area/heart area, LV base SI, and the RV Base SI. The test group consisted of 14 of 27 fetuses with an isolated CoA (52%) and 13 of 27 (48%) with additional heart abnormalities. For the validation group, 10 of 27 (37%) had an isolated CoA, and 17 (63%) had additional cardiac abnormalities. Using the logistic regression equation derived from the test group (54 fetuses: 27 with CoA and 27 without CoA), the validation group (54 fetuses: 27 with CoA and 27 without CoA) demonstrated the following: sensitivity for detecting CoA of 98.15%, specificity 98.15%, and a false-positive rate of 1.85%. When the logistic regression was applied to the test group of fetuses with isolated CoA, 100% (14/14) were identified with logistic regression analysis. For the validation group, 9 of 10 (90%) of fetuses with isolated CoA were identified using the logistic regression equation.
CONCLUSIONS: Using length, width, and area measurements of the 4CV and ventricles from which ratios are computed detects 98.15% of high-risk fetuses who will demonstrate CoA following birth, with a specificity of 98.15%, or a false-positive rate of 1.85%.

Keywords

References

  1. Wik, Jortveit, V. Sitras, et al., ���Detection of Severe Congenital Heart Defects in Live���Born Infants in Norway 2017���2020,��� Acta Paediatrica 113, no. 1 (2024): 135���142, https://doi.org/10.1111/apa.16953.
  2. F. Zwanenburg, A. D. J. Ten Harkel, M. C. Snoep, et al., ���Prenatal Detection of Aortic Coarctation in a Well���Organized Screening Setting: Are We There Yet?,��� Prenatal Diagnosis 43, no. 5 (2023): 620���628, https://doi.org/10.1002/pd.6291.
  3. G. R. DeVore, K. Tabsh, B. Polanco, G. Satou, and M. Sklansky, ���Fetal Heart Size: A Comparison Between the Point���to���Point Trace and Automated Ellipse Methods Between 20 and 40 Weeks' Gestation,��� Journal of Ultrasound in Medicine 35, no. 12 (2016): 2543���2562, https://doi.org/10.7863/ultra.16.02019.
  4. R. Gabbay���Benziv, O. M. Turan, C. Harman, and S. Turan, ���Nomograms for Fetal Cardiac Ventricular Width and Right���to���Left Ventricular Ratio,��� Journal of Ultrasound in Medicine 34, no. 11 (2015): 2049���2055, https://doi.org/10.7863/ultra.14.10022.
  5. L. Garc��a���Otero, O. G��mez, M. Rodriguez���L��pez, et al., ���Nomograms of Fetal Cardiac Dimensions at 18���41 Weeks of Gestation,��� Fetal Diagnosis and Therapy 47, no. 5 (2020): 387���398, https://doi.org/10.1159/000494838.
  6. L. Garc��a���Otero, I. Soveral, ��. Sep��lveda���Mart��nez, et al., ���Reference Ranges for Fetal Cardiac, Ventricular and Atrial Relative Size, Sphericity, Ventricular Dominance, Wall Asymmetry and Relative Wall Thickness From 18 to 41 Gestational Weeks,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 58, no. 3 (2021): 388���397, https://doi.org/10.1002/uog.23127.
  7. X. Gu, H. Zhu, Y. Zhang, et al., ���Quantile Score: A New Reference System for Quantitative Fetal Echocardiography Based on a Large Multicenter Study,��� Journal of the American Society of Echocardiography 32, no. 2 (2019): 296���302, https://doi.org/10.1016/j.echo.2018.09.012.
  8. A. Krishnan, J. I. Pike, R. McCarter, et al., ���Predictive Models for Normal Fetal Cardiac Structures,��� Journal of the American Society of Echocardiography 29, no. 12 (2016): 1197���1206, https://doi.org/10.1016/j.echo.2016.08.019.
  9. W. Lee, T. Riggs, V. Amula, et al., ���Fetal Echocardiography: Z���Score Reference Ranges for a Large Patient Population,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 35, no. 1 (2010): 28���34, https://doi.org/10.1002/uog.7483.
  10. E. C. Lussier, S. J. Yeh, W. L. Chih, et al., ���Reference Ranges and Z���Scores for Fetal Cardiac Measurements From Two���Dimensional Echocardiography in Asian Population,��� PLoS ONE 15, no. 6 (2020): e0233179, https://doi.org/10.1371/journal.pone.0233179.
  11. C. Schneider, B. W. McCrindle, J. S. Carvalho, L. K. Hornberger, K. P. McCarthy, and P. E. Daubeney, ���Development of Z���Scores for Fetal Cardiac Dimensions From Echocardiography,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 26, no. 6 (2005): 599���605, https://doi.org/10.1002/uog.2597.
  12. G. R. DeVore, B. Cuneo, B. Klas, G. Satou, and M. Sklansky, ���Comprehensive Evaluation of Fetal Cardiac Ventricular Widths and Ratios Using a 24���Segment Speckle Tracking Technique,��� Journal of Ultrasound in Medicine 38, no. 4 (2019): 1039���1047, https://doi.org/10.1002/jum.14792.
  13. G. R. DeVore, B. Klas, G. Satou, and M. Sklansky, ���Evaluation of the Right and Left Ventricles: An Integrated Approach Measuring the Area, Length, and Width of the Chambers in Normal Fetuses,��� Prenatal Diagnosis 37, no. 12 (2017): 1203���1212, https://doi.org/10.1002/pd.5166.
  14. G. R. DeVore, B. Klas, G. Satou, and M. Sklansky, ���24���Segment Sphericity Index: A New Technique to Evaluate Fetal Cardiac Diastolic Shape,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 51, no. 5 (2018): 650���658, https://doi.org/10.1002/uog.17505.
  15. G. R. DeVore, G. Satou, and M. Sklansky, ���Abnormal Fetal Findings Associated With a Global Sphericity Index of the 4���Chamber View Below the 5th Centile,��� Journal of Ultrasound in Medicine 36, no. 11 (2017): 2309���2318, https://doi.org/10.1002/jum.14261.
  16. G. R. DeVore, G. Satou, and M. Sklansky, ���Area of the Fetal Heart's Four���Chamber View: A Practical Screening Tool to Improve Detection of Cardiac Abnormalities in a Low���Risk Population,��� Prenatal Diagnosis 37, no. 2 (2017): 151���155, https://doi.org/10.1002/pd.4980.
  17. G. R. DeVore, G. M. Satou, Y. Afshar, D. Harake, and M. Sklansky, ���Evaluation of Fetal Cardiac Size and Shape: A New Screening Tool to Identify Fetuses at Risk for Tetralogy of Fallot,��� Journal of Ultrasound in Medicine 40 (2021): 2537���2548, https://doi.org/10.1002/jum.15639.
  18. L. H. Wu, N. Wang, H. N. Xie, L. Du, and R. Peng, ���Cardiovascular Z���Scores in Fetuses With Tetralogy of Fallot,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 44, no. 6 (2014): 674���681, https://doi.org/10.1002/uog.13419.
  19. D. L. Brown, S. M. Durfee, and L. K. Hornberger, ���Ventricular Discrepancy as a Sonographic Sign of Coarctation of the Fetal Aorta: How Reliable Is It?,��� Journal of Ultrasound in Medicine 16, no. 2 (1997): 95���99, https://doi.org/10.7863/jum.1997.16.2.95.
  20. C. Villala��n, F. D'Antonio, M. E. Flacco, et al., ���Diagnostic Accuracy of Prenatal Ultrasound in Coarctation of Aorta: Systematic Review and Individual Participant Data Meta���Analysis,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 63, no. 4 (2024): 446���456, https://doi.org/10.1002/uog.27576.
  21. E. G��mez���Montes, I. Herraiz, P. I. G��mez���Arriaga, D. Escribano, A. Mendoza, and A. Galindo, ���Gestational Age���Specific Scoring Systems for the Prediction of Coarctation of the Aorta,��� Prenatal Diagnosis 34, no. 12 (2014): 1198���1206, https://doi.org/10.1002/pd.4452.
  22. C. M��rginean, C. O. M��rginean, I. Muntean, R. Tog��nel, S. Void��zan, and L. Gozar, ���The Role of Ventricular Disproportion, Aortic, and Ductal Isthmus Ultrasound Measurements for the Diagnosis of Fetal Aortic Coarctation, in the Third Trimester of Pregnancy,��� Medical Ultrasonography 17, no. 4 (2015): 475���481, https://doi.org/10.11152/mu.2013.2066.174.rvd.
  23. I. Durand, G. Deverriere, C. Thill, et al., ���Prenatal Detection of Coarctation of the Aorta in a Non���Selected Population: A Prospective Analysis of 10 Years of Experience,��� Pediatric Cardiology 36, no. 6 (2015): 1248���1254, https://doi.org/10.1007/s00246���015���1153���1.
  24. S. Anuwutnavin, G. Satou, R. K. Chang, G. R. DeVore, A. Abuel, and M. Sklansky, ���Prenatal Sonographic Predictors of Neonatal Coarctation of the Aorta,��� Journal of Ultrasound in Medicine 35, no. 11 (2016): 2353���2364, https://doi.org/10.7863/ultra.15.06049.
  25. B. Arya, A. Bhat, M. Vernon, J. Conwell, and M. Lewin, ���Utility of Novel Fetal Echocardiographic Morphometric Measures of the Aortic Arch in the Diagnosis of Neonatal Coarctation of the Aorta,��� Prenatal Diagnosis 36, no. 2 (2016): 127���134, https://doi.org/10.1002/pd.4753.
  26. B. J. Toole, B. Schlosser, C. E. McCracken, N. Stauffer, W. L. Border, and R. Sachdeva, ���Importance of Relationship Between Ductus and Isthmus in Fetal Diagnosis of Coarctation of Aorta,��� Echocardiography 33, no. 5 (2016): 771���777, https://doi.org/10.1111/echo.13140.
  27. T. V. Vigneswaran, V. Zidere, S. Chivers, M. Charakida, R. Akolekar, and J. M. Simpson, ���Impact of Prospective Measurement of Outflow Tracts in Prediction of Coarctation of the Aorta,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 56, no. 6 (2020): 850���856, https://doi.org/10.1002/uog.21957.
  28. K. Freeman, R. Kronmal, M. Clouse, et al., ���Validation of Prenatal Aortic Arch Angle Measurements in the Diagnosis of Neonatal Coarctation of the Aorta,��� Pediatric Cardiology 42, no. 6 (2021): 1365���1371, https://doi.org/10.1007/s00246���021���02620���2.
  29. K. Fricke, P. Liuba, and C. G. Weismann, ���Fetal Echocardiographic Dimension Indices: Important Predictors of Postnatal Coarctation,��� Pediatric Cardiology 42, no. 3 (2021): 517���525, https://doi.org/10.1007/s00246���020���02509���6.
  30. J. Liu, H. Cao, L. Zhang, et al., ���Incremental Value of Myocardial Deformation in Predicting Postnatal Coarctation of the Aorta: Establishment of a Novel Diagnostic Model,��� Journal of the American Society of Echocardiography 35, no. 12 (2022): 1298���1310, https://doi.org/10.1016/j.echo.2022.07.010.
  31. H. H. Wang, X. M. Wang, M. Zhu, et al., ���A Clinical Prediction Model to Estimate the Risk for Coarctation of the Aorta: From Fetal to Newborn Life,��� Journal of Obstetrics and Gynaecology Research 48, no. 9 (2022): 2304���2313, https://doi.org/10.1111/jog.15341.
  32. T. Fujisaki, Y. Ishii, K. Takahashi, et al., ���Utility of Novel Echocardiographic Measurements to Improve Prenatal Diagnosis of Coarctation of the Aorta,��� Scientific Reports 13, no. 1 (2023): 4912, https://doi.org/10.1038/s41598���023���31749���8.
  33. A. Lee, M. Reddy, M. Chai, et al., ���Subjective and Objective Sonographic Assessment for the Prenatal Detection of Neonatal Coarctation of the Aorta,��� Fetal Diagnosis and Therapy 50, no. 2 (2023): 98���105, https://doi.org/10.1159/000530020.
  34. K. Zych���Krekora, M. Krekora, M. Grzesiak, and O. Sylwestrzak, ���The Predictive Value of the CSA Index in the Prenatal Diagnosis of Aortic Coarctation in Ultrasound Examination Performed During the Second Trimester,��� Journal of Clinical Medicine 12, no. 16 (2023): 5190, https://doi.org/10.3390/jcm12165190.
  35. S. Amar, S. S. Moore, P. Wutthigate, et al., ���Gestational Age���Specific Markers Associated With Postnatal Intervention in Fetal Suspicion of Coarctation of the Aorta,��� American Journal of Perinatology 41 (2024): 2098���2108, https://doi.org/10.1055/a���2298���4670.
  36. C. A. Taks��e���Vester, K. Mikolaj, O. B. B. Petersen, et al., ���Role of Artificial���Intelligence���Assisted Automated Cardiac Biometrics in Prenatal Screening for Coarctation of Aorta,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 64 (2024): 36���43, https://doi.org/10.1002/uog.27608.
  37. G. K. Sharland, K. Y. Chan, and L. D. Allan, ���Coarctation of the Aorta: Difficulties in Prenatal Diagnosis,��� British Heart Journal 71, no. 1 (1994): 70���75, https://doi.org/10.1136/hrt.71.1.70.
  38. L. K. Hornberger, D. J. Sahn, C. S. Kleinman, J. Copel, and N. H. Silverman, ���Antenatal Diagnosis of Coarctation of the Aorta: A Multicenter Experience,��� Journal of the American College of Cardiology 23, no. 2 (1994): 417���423, https://doi.org/10.1016/0735���1097(94)90429���4.
  39. J. S. Kirk, C. H. Comstock, W. Lee, R. S. Smith, T. W. Riggs, and E. Weinhouse, ���Fetal Cardiac Asymmetry: A Marker for Congenital Heart Disease,��� Obstetrics and Gynecology 93, no. 2 (1999): 189���192, https://doi.org/10.1016/s0029���7844(98)00391���3.
  40. G. R. DeVore, C. Haxel, G. Satou, et al., ���Improved Detection of Coarctation of the Aorta Using Speckle���Tracking Analysis of Fetal Heart on Last Examination Prior to Delivery,��� Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 57, no. 2 (2021): 282���291, https://doi.org/10.1002/uog.21989.
  41. G. R. DeVore, ���Equations for the Right���to���Left Ventricular Ratio and Right and Left Ventricular Widths Do Not Match the Corresponding Tables,��� Journal of Ultrasound in Medicine 38, no. 2 (2019): 553���554, https://doi.org/10.1002/jum.14702.
  42. G. R. DeVore, ���Comment on ���Utility of Novel Fetal Echocardiographic Morphometric Measures of the Aortic Arch in the Diagnosis of Neonatal Coarctation of the Aorta���,��� Prenatal Diagnosis 38, no. 10 (2018): 795���796, https://doi.org/10.1002/pd.5288.
  43. B. Arya, ���Response to Comment on ���Utility of Novel Fetal Echocardiographic Morphometric Measures of the Aortic Arch in the Diagnosis of Neonatal Coarctation of the Aorta���,��� Prenatal Diagnosis 38, no. 10 (2018): 797, https://doi.org/10.1002/pd.5293.
  44. A. Power, A. Nettel���Aguirre, and D. Fruitman, ���Fetal Right Ventricular Prominence: Associated Postnatal Abnormalities and Coarctation Clinical Prediction Tool,��� Pediatric Cardiology 38, no. 7 (2017): 1471���1477, https://doi.org/10.1007/s00246���017���1686���6.
  45. H. Kawamura, N. Inamura, Y. Inoue, Y. Kawazu, F. Kayatani, and N. Mitsuda, ���Is Retrograde Blood Flow of Aortic Isthmus Useful for the Prenatal Screening of Coarctation of the Aorta by Fetal Color Doppler Echocardiography? A Preliminary Study,��� Journal of Medical Ultrasonics (2001) 45, no. 3 (2018): 431���435, https://doi.org/10.1007/s10396���017���0844���z.

MeSH Term

Humans
Aortic Coarctation
Ultrasonography, Prenatal
Female
Sensitivity and Specificity
Retrospective Studies
Reproducibility of Results
Pregnancy
Fetal Heart
Infant, Newborn
Echocardiography, Four-Dimensional
Male

Word Cloud

Created with Highcharts 10.0.0CoA27groupfetusesarearegressionlogistictest4CVend-diastoliccomputedUsingidentifiedwithoutequationvalidationisolated9815%specificityfalse-positiverateusingmeasurementsheartlengthsphericityindexanalysisventricularsensitivitycoarctationaortafetalcardiologistswidthmeasuredepicardiumGSIlength/widthspeckletrackingmid-chamberbaseventriclesratiosarea/4CVderivedappliedfollowingRVSIadditionalabnormalities1054fetuses:185%prenatalOBJECTIVE:determineamongsuspectedprenatallysizeshapefour-chamberviewMETHODS:retrospectivestudy108pediatricriskslastantenatalultrasoundperformedanalyzedpoint-to-pointtracemethodaroundepicardialborderlargestcomputeglobalbasalwidthsadditionfollows:rightleftz-scorescoefficientspredictingprobabilitydoneRESULTS:measurements:area/heartLVBaseconsisted1452%1348%37%1763%cardiacdemonstratedfollowing:detecting100%14/14990%CONCLUSIONS:detectshigh-riskwilldemonstratebirthNewMethodFour-ChamberViewIdentifyFetusesSubsequentlyConfirmedPostnatalAorticCoarctationechocardiographyfetusdetectiondiagnosis

Similar Articles

Cited By