Changes in Left Ventricular Function Assessed by 3D Echocardiography During Severe Central Hypovolemia in Healthy Humans.

Kazukuni Hirabuki, Noritaka Hata, Marina Fukuie, Rina Suzuki, Tomoya Suda, Takahiro Uechi, Ai Hirasawa, Jun Sugawara, Takeaki Matsuda, Shigeki Shibata
Author Information
  1. Kazukuni Hirabuki: Department of General Medicine, Faculty of Medicine, Kyorin University, Mitaka City, Tokyo, Japan. ORCID
  2. Noritaka Hata: Department of General Medicine, Faculty of Medicine, Kyorin University, Mitaka City, Tokyo, Japan.
  3. Marina Fukuie: The National Institute of Advanced Industrial Science and Technology, Mitaka City, Tokyo, Japan.
  4. Rina Suzuki: Department of General Medicine, Faculty of Medicine, Kyorin University, Mitaka City, Tokyo, Japan.
  5. Tomoya Suda: Department of General Medicine, Faculty of Medicine, Kyorin University, Mitaka City, Tokyo, Japan.
  6. Takahiro Uechi: Department of General Medicine, Faculty of Medicine, Kyorin University, Mitaka City, Tokyo, Japan.
  7. Ai Hirasawa: Department of Health and Welfare, Faculty of Health Sciences, Kyorin University, Mitaka City, Tokyo, Japan.
  8. Jun Sugawara: The National Institute of Advanced Industrial Science and Technology, Mitaka City, Tokyo, Japan.
  9. Takeaki Matsuda: Department of General Medicine, Faculty of Medicine, Kyorin University, Mitaka City, Tokyo, Japan.
  10. Shigeki Shibata: Department of Physical Therapy, Faculty of Health Science, Kyorin University, Mitaka City, Tokyo, Japan.

Abstract

PURPOSE: Central hypovolemia is considered to lead to a compensatory increase in cardiac contractility. From a physiological perspective, left ventricular (LV) twisting motion, which plays an important role in maintaining cardiac output, should be enhanced during central hypovolemia, but previous studies have shown inconsistent findings. Using 3D echocardiography, we tested the hypothesis that the LV twisting and untwisting motion would be enhanced during severe central hypovolemia.
METHODS: Thirteen healthy men (25 �� 5 years old) underwent the maximal lower body negative pressure (LBNP) protocol; graded increase in LBNP loads up to presyncope. We evaluated the basic hemodynamics and LV function with 3D and Doppler echocardiography at each stage of LBNP. Indices were compared among baseline, half maximal LBNP (LBNP1/2max), and one stage before the presyncope (LBNPpre-max) to consider individual differences in orthostatic tolerance.
RESULTS: In response to LBNP, ejection fraction (baseline: 62 �� 3, LBNP1/2max: 55 �� 5, LBNPpre-max: 43% �� 9%, mean �� SD, p < 0.01, ANOVA), global longitudinal strain (-20.5 �� 2.8, -17.6 �� 2.7, -13.6% �� 4.7%, p < 0.01), and global circumferential strain (-31.2 �� 3.7, -26.8 �� 3.3, -19.4% �� 5.3%, p < 0.01) were weakened. Twist (15.2 �� 5.1, 14.5 �� 5.4, 20.9�� �� 7.7��, p = 0.012) and peak untwisting rate (-138 �� 42, -164 �� 50, -245��/cm �� 88��/cm, p < 0.01) were strengthened at the LBNPpre-max. e' (14.1 �� 2.0, 11.1 �� 1.5, 8.2�� �� 2.2 cm/s, p < 0.01) decreased in response to LBNP, while E/e' (5.8 �� 0.8, 5.4 �� 1.0, 7.8 �� 2.3, p < 0.01) increased at LBNPpre-max.
CONCLUSION: The present findings indicate that LV twisting motion is enhanced during severe central hypovolemia. On the other hand, conventional echocardiographic indices appeared to deteriorate. Intriguingly, an index of LV filling (E/e') was paradoxically enhanced during severe central hypovolemia.

Keywords

References

  1. J. L. Vincent and D. De Backer, ���Circulatory Shock,��� New England Journal of Medicine 369, no. 18 (2013): 1726���1734, https://doi.org/10.1056/NEJMRA1208943.
  2. A. Hodt, J. Hisdal, M. Stugaard, E. Stranden, D. Atar, and K. Steine, ���Reduced Preload Elicits Increased LV Twist in Healthy Humans: An Echocardiographic Speckle���Tracking Study During Lower Body Negative Pressure,��� Clinical Physiology and Functional Imaging 31, no. 5 (2011): 382���389, https://doi.org/10.1111/j.1475���097X.2011.01029.x.
  3. A. Hodt, J. Hisdal, M. Stugaard, E. Stranden, D. Atar, and K. Steine, ���Increased LV Apical Untwist During Preload Reduction in Healthy Humans: An Echocardiographic Speckle Tracking Study During Lower Body Negative Pressure,��� Physiological Reports 3, no. 3 (2015): 1���12, 10.14814/phy2.12330.
  4. M. D. Nelson, M. J. Haykowsky, S. R. Petersen, D. S. Delorey, J. Cheng���Baron, and R. B. Thompson, ���Increased Left Ventricular Twist, Untwisting Rates, and Suction Maintain Global Diastolic Function During Passive Heat Stress in Humans,��� American Journal of Physiology. Heart and Circulatory Physiology 298 (2010): 930���937, https://doi.org/10.1152/ajpheart.00987.2009.���Left.
  5. A. M. Williams, R. E. Shave, M. Stembridge, and N. D. Eves, ���Females Have Greater Left Ventricular Twist Mechanics Than Males During Acute Reductions to Preload,��� American Journal of Physiology. Heart and Circulatory Physiology 311, no. 1 (2016): H76���H84, https://doi.org/10.1152/ajpheart.00057.2016.
  6. A. M. Williams, P. N. Ainslie, J. D. Anholm, C. Gasho, P. Subedi, and M. Stembridge, ���Left Ventricular Twist Is Augmented in Hypoxia by ��1���Adrenergic���Dependent and ��1���Adrenergic���Independent Factors, Without Evidence of Endocardial Dysfunction,��� Circulation: Cardiovascular Imaging 12, no. 5 (2019): 1���10, https://doi.org/10.1161/CIRCIMAGING.118.008455.
  7. Y. Seo, T. Ishizu, and K. Aonuma, ���Current Status of 3���Dimensional Speckle Tracking Echocardiography: A Review From Our Experiences,��� Journal of Cardiovasc Ultrasound 22, no. 2 (2014): 49���57, https://doi.org/10.4250/jcu.2014.22.2.49.
  8. D. Muraru, A. Niero, H. Rodriguez���Zanella, D. Cherata, and L. Badano, ���Three���Dimensional Speckle���Tracking Echocardiography: Benefits and Limitations of Integrating Myocardial Mechanics With Three���Dimensional Imaging,��� Cardiovascular Diagnosis and Therapy 8, no. 1 (2018): 101���117, doi:10.21037/cdt.2017.06.01.
  9. M. D. Nelson, L. A. Altamirano���Diaz, S. R. Petersen, et al., ���Left Ventricular Systolic and Diastolic Function During Tilt���Table Positioning and Passive Heat Stress in Humans,��� American Journal of Physiology. Heart and Circulatory Physiology 301, no. 2 (2011): H599���H608, https://doi.org/10.1152/AJPHEART.00127.2011.
  10. A. M. Williams, R. E. Shave, J. M. Coulson, H. White, B. Rosser���Stanford, and N. D. Eves, ���Influence of Vagal Control on Sex���Related Differences in Left Ventricular Mechanics and Hemodynamics,��� American Journal of Physiology. Heart and Circulatory Physiology 315 (2018): 687���698, https://doi.org/10.1152/ajpheart.00733.2017.���Left.
  11. R. Lord, D. MacLeod, K. George, D. Oxborough, R. Shave, and M. Stembridge, ���Reduced Left Ventricular Filling Following Blood Volume Extraction Does Not Result in Compensatory Augmentation of Cardiac Mechanics,��� Experimental Physiology 103, no. 4 (2018): 495���501, https://doi.org/10.1113/EP086761.
  12. U. Saygisunar, H. Kili��, M. Ayt��rk, et al., ���Volume Depletion Provided by Blood Donation Alters Twist Mechanics of the Heart: Preload Dependency of Left Ventricular Torsion,��� Scandinavian Cardiovascular Journal 50, no. 1 (2016): 23���27, https://doi.org/10.3109/14017431.2015.1112028.
  13. J. V. Nixon, R. G. Murray, P. D. Leonard, J. H. Mitchell, and C. G. Blomqvist, ���Effect of Large Variations in Preload on Left Ventricular Performance Characteristics in Normal Subjects,��� Circulation 65, no. 4 (1982): 698���703, https://doi.org/10.1161/01.CIR.65.4.698.
  14. K. Negishi, A. G. Borowski, Z. B. Popovi��, et al., ���Effect of Gravitational Gradients on Cardiac Filling and Performance,��� Journal of the American Society of Echocardiography 30, no. 12 (2017): 1180���1188, https://doi.org/10.1016/j.echo.2017.08.005.
  15. V. Parisi, M. A. Losi, C. Contaldi, et al., ���Speckle���Tracking Analysis Based on 2D Echocardiography Does Not Reliably Measure Left Ventricular Torsion,��� Clinical Physiology and Functional Imaging 33, no. 2 (2013): 117���121, https://doi.org/10.1111/CPF.12002.
  16. L. D. Jacobs, I. S. Salgo, S. Goonewardena, et al., ���Rapid Online Quantification of Left Ventricular Volume From Real���Time Three���dimensional Echocardiographic Data,��� European Heart Journal 27, no. 4 (2006): 460���468, https://doi.org/10.1093/eurheartj/ehi666.
  17. J. L. Dorosz, D. C. Lezotte, D. A. Weitzenkamp, L. A. Allen, and E. E. Salcedo, ���Performance of 3���Dimensional Echocardiography in Measuring Left Ventricular Volumes and Ejection Fraction: A Systematic Review and Meta���Analysis,��� Journal of the American College of Cardiology 59, no. 20 (2012): 1799���1808, https://doi.org/10.1016/j.jacc.2012.01.037.
  18. V. C. C. Wu, M. Takeuchi, K. Otani, et al., ���Effect of Through���Plane and Twisting Motion on Left Ventricular Strain Calculation: Direct Comparison Between Two���Dimensional and Three���Dimensional Speckle���Tracking Echocardiography,��� Journal of the American Society of Echocardiography 26, no. 11 (2013): 1274���1281.e4, https://doi.org/10.1016/j.echo.2013.07.006.
  19. M. Altman, C. Bergerot, A. Aussoleil, et al., ���Assessment of Left Ventricular Systolic Function by Deformation Imaging Derived From Speckle Tracking: A Comparison Between 2D and 3D Echo Modalities,��� European Heart Journal ��� Cardiovascular Imaging 15, no. 3 (2014): 316���323, https://doi.org/10.1093/ehjci/jet103.
  20. R. M. Lang, M. Bierig, R. B. Devereux, et al., ���Recommendations for Chamber Quantification,��� European Journal of Echocardiography 7, no. 2 (2006): 79���108, https://doi.org/10.1016/j.euje.
  21. Q. Fu, A. Arbab���Zadeh, M. A. Perhonen, R. Zhang, J. H. Zuckerman, and B. D. Levine, ���Hemodynamics of Orthostatic Intolerance: Implications for Gender Differences,��� American Journal of Physiology. Heart and Circulatory Physiology 286, no. 1 (2004): H449���H457, https://doi.org/10.1152/ajpheart.00735.2002.
  22. H. F. J. Mannaerts, J. A. Van Der Heide, O. Kamp, M. G. Stoel, J. Twisk, and C. A. Visser, ���Early Identification of Left Ventricular Remodelling After Myocardial Infarction, Assessed by Transthoracic 3D Echocardiography,��� European Heart Journal 25, no. 8 (2004): 680���687, https://doi.org/10.1016/j.ehj.2004.02.030.
  23. S. A. Kleijn, M. F. A. Aly, C. B. Terwee, A. C. Van Rossum, and O. Kamp, ���Reliability of Left Ventricular Volumes and Function Measurements Using Three���Dimensional Speckle Tracking Echocardiography,��� European Heart Journal ��� Cardiovascular Imaging 13, no. 2 (2012): 159���168, https://doi.org/10.1093/ejechocard/jer174.
  24. R. M. Lang, L. P. Badano, M. A. Victor, et al., ���Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging,��� Journal of the American Society of Echocardiography 28, no. 1 (2015): 1���39.e14, https://doi.org/10.1016/j.echo.2014.10.003.
  25. R. P. Kelly, C. T. Ting, T. M. Yang, et al., ���Effective Arterial Elastance as Index of Arterial Vascular Load in Humans,��� Circulation 86, no. 2 (1992): 513���521, https://doi.org/10.1161/01.CIR.86.2.513.
  26. A. T. Burns, A. L. Gerche, D. L. Prior, and A. I. MacIsaac, ���Left Ventricular Torsion Parameters Are Affected by Acute Changes in Load,��� Echocardiography 27, no. 4 (2010): 407���414, https://doi.org/10.1111/j.1540���8175.2009.01037.x.
  27. A. Opdahl, E. W. Remme, T. Helle���Valle, T. Edvardsen, and O. A. Smiseth, ���Myocardial Relaxation, Restoring Forces, and Early���Diastolic Load Are Independent Determinants of Left Ventricular Untwisting Rate,��� Circulation 126, no. 12 (2012): 1441���1451, https://doi.org/10.1161/CIRCULATIONAHA.111.080861.
  28. A. M. Schiller, J. T. Howard, and V. A. Convertino, ���The Physiology of Blood Loss and Shock: New Insights From a Human Laboratory Model of Hemorrhage,��� Experimental Biology and Medicine 242, no. 8 (2017): 874���883, https://doi.org/10.1177/1535370217694099.
  29. C. A. Gibbons Kroeker, J. V. Tyberg, and R. Beyar, ���Effects of Load Manipulations, Heart Rate, and Contractility on Left Ventricular Apical Rotation: An Experimental Study in Anesthetized Dogs,��� Circulation 92, no. 1 (1995): 130���141, https://doi.org/10.1161/01.CIR.92.1.130.
  30. B. M. Van Dalen, F. Kauer, W. B. Vletter, et al., ���Influence of Cardiac Shape on Left Ventricular Twist,��� Journal of Applied Physiology 108, no. 1 (2010): 146���151, https://doi.org/10.1152/japplphysiol.00419.2009.
  31. R. Enache, B. A. Popescu, R. Piazza, et al., ���Left Ventricular Shape and Mass Impact Torsional Dynamics in Asymptomatic Patients With Chronic Aortic Regurgitation and Normal Left Ventricular Ejection Fraction,��� International Journal of Cardiovascular Imaging 31, no. 7 (2015): 1315���1326, https://doi.org/10.1007/s10554���015���0684���0.
  32. R. B. Weiner, A. E. Weyman, J. H. Kim, T. J. Wang, M. H. Picard, and A. L. Baggish, ���The Impact of Isometric Handgrip Testing on Left Ventricular Twist Mechanics,��� Journal of Physiology 590, no. 20 (2012): 5141���5150, https://doi.org/10.1113/jphysiol.2012.236166.
  33. G. Vaddadi, M. D. Esler, T. Dawood, and E. Lambert, ���Persistence of Muscle Sympathetic Nerve Activity During Vasovagal Syncope,��� European Heart Journal 31, no. 16 (2010): 2027���2033, https://doi.org/10.1093/eurheartj/ehq071.
  34. Q. Fu, B. Verheyden, W. Wieling, and B. D. Levine, ���Cardiac Output and Sympathetic Vasoconstrictor Responses During Upright Tilt to Presyncope in Healthy Humans,��� Journal of Physiology 590, no. 8 (2012): 1839���1848, https://doi.org/10.1113/jphysiol.2011.224998.
  35. B. D. Johnson, N. Van Helmond, T. B. Curry, C. M. Van Buskirk, V. A. Convertino, and M. J. Joyner, ���Reductions in Central Venous Pressure by Lower Body Negative Pressure or Blood Loss Elicit Similar Hemodynamic Responses,��� Journal of Applied Physiology 117, no. 2 (2014): 131���141, https://doi.org/10.1152/japplphysiol.00070.2014.
  36. H. Mori, S. Ishikawa, S. Kojima, et al., ���Increased Responsiveness of Left Ventricular Apical Myocardium to Adrenergic Stimuli,��� Cardiovascular Research 27, no. 2 (1993): 192���198, https://doi.org/10.1093/CVR/27.2.192.
  37. E. Akagawa, K. Murata, N. Tanaka, et al., ���Augmentation of Left Ventricular Apical Endocardial Rotation With Inotropic Stimulation Contributes to Increased Left Ventricular Torsion and Radial Strain in Normal Subjects: Quantitative Assessment Utilizing a Novel Automated Tissue Tracking Technique,��� Circulation Journal 71, no. 5 (2007): 661���668, https://doi.org/10.1253/CIRCJ.71.661.
  38. A. Opdahl, T. Helle���Valle, E. W. Remme, et al., ���Apical Rotation by Speckle Tracking Echocardiography: A Simplified Bedside Index of Left Ventricular Twist,��� Journal of the American Society of Echocardiography 21, no. 10 (2008): 1121���1128, https://doi.org/10.1016/J.ECHO.2008.06.012.
  39. P. P. Sengupta, A. J. Tajik, K. Chandrasekaran, and B. K. Khandheria, ���Twist Mechanics of the Left Ventricle: Principles and Application,��� JACC: Cardiovascular Imaging 1, no. 3 (2008): 366���376, https://doi.org/10.1016/J.JCMG.2008.02.006.
  40. M. B. Buchalter, J. L. Weiss, W. J. Rogers, et al., ���Noninvasive Quantification of Left Ventricular Rotational Deformation in Normal Humans Using Magnetic Resonance Imaging Myocardial Tagging,��� Circulation 81, no. 4 (1990): 1236���1244, https://doi.org/10.1161/01.CIR.81.4.1236.
  41. C. Hinojosa���Laborde, J. T. Howard, J. Mulligan, G. Z. Grudic, and V. A. Convertino, ���Comparison of Compensatory Reserve During Lower���Body Negative Pressure and Hemorrhage in Nonhuman Primates,��� American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 310, no. 11 (2016): R1154���R1159, https://doi.org/10.1152/AJPREGU.00304.2015.
  42. J. W. Cannon, ���Hemorrhagic Shock,��� New England Journal of Medicine 378, no. 4 (2018): 370���379, https://doi.org/10.1056/NEJMra1705649.
  43. K. Sagawa, ���The Ventricular Pressure���Volume Diagram Revisited,��� Circulation Research 43, no. 5 (1978): 677���687, https://doi.org/10.1161/01.RES.43.5.677.
  44. F. A. Flachskampf, T. Biering���S��rensen, S. D. Solomon, O. Duvernoy, T. Bjerner, and O. A. Smiseth, ���Cardiac Imaging to Evaluate Left Ventricular Diastolic Function,��� JACC: Cardiovascular Imaging 8, no. 9 (2015): 1071���1093, https://doi.org/10.1016/j.jcmg.2015.07.004.
  45. S. F. Nagueh, O. A. Smiseth, C. P. Appleton, et al., ���Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging,��� Journal of the American Society of Echocardiography 29, no. 4 (2016): 277���314, https://doi.org/10.1016/j.echo.2016.01.011.
  46. S. F. Nagueh, ���Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis with Echocardiography,��� JACC: Cardiovascular Imaging 13, no. 1 (2020): 228���244, https://doi.org/10.1016/j.jcmg.2018.10.038.
  47. T. Oki, T. Tabata, H. Yamada, et al., ���Clinical Application of Pulsed Doppler Tissue Imaging for Assessing Abnormal Left Ventricular Relaxation,��� American Journal of Cardiology 79, no. 7 (1997): 921���928, https://doi.org/10.1016/S0002���9149(97)00015���5.
  48. S. R. Ommen, R. A. Nishimura, C. P. Appleton, et al., ���Clinical Utility of Doppler Echocardiography and Tissue Doppler Imaging in the Estimation of Left Ventricular Filling Pressures: A Comparative Simultaneous Doppler���Catheterization Study,��� Circulation 102, no. 15 (2000): 1788���1794, https://doi.org/10.1161/01.CIR.102.15.1788.
  49. S. F. Nagueh, K. J. Middleton, H. A. Kopelen, W. A. Zoghbi, and M. A. Qui��ones, ���Doppler Tissue Imaging: A Noninvasive Technique for Evaluation of Left Ventricular Relaxation and Estimation of Filling Pressures,��� Journal of the American College of Cardiology 30, no. 6 (1997): 1527���1533, https://doi.org/10.1016/S0735���1097(97)00344���6.
  50. M. S. Firstenberg, N. L. Greenberg, M. L. Main, et al., ���Determinants of Diastolic Myocardial Tissue Doppler Velocities: Influences of Relaxation and Preload,��� Journal of Applied Physiology 90, no. 1 (2001): 299���307, https://doi.org/10.1152/jappl.2001.90.1.299.
  51. D. C. Jacques, M. R. Pinsky, D. Severyn, and J. Gorcsan, ���Influence of Alterations in Loading on Mitral Annular Velocity by Tissue Doppler Echocardiography and Its Associated Ability to Predict Filling Pressures,��� Chest 126, no. 6 (2004): 1910���1918, https://doi.org/10.1378/chest.126.6.1910.
  52. A. Opdahl, E. W. Remme, T. Helle���Valle, et al., ���Determinants of Left Ventricular Early���Diastolic Lengthening Velocity Independent Contributions From Left Ventricular Relaxation, Restoring Forces, and Lengthening Load,��� Circulation 119, no. 19 (2009): 2578���2586, https://doi.org/10.1161/CIRCULATIONAHA.108.791681.
  53. M. S. Firstenberg, B. D. Levine, M. J. Garcia, et al., ���Relationship of Echocardiographic Indices to Pulmonary Capillary Wedge Pressures in Healthy Volunteers,��� Journal of the American College of Cardiology 36, no. 5 (2000): 1664���1669, https://doi.org/10.1016/S0735���1097(00)00909���8.
  54. T. Oki, K. Fukuda, T. Tabata, et al., ���Effect of an Acute Increase in Afterload on Left Ventricular Regional Wall Motion Velocity in Healthy Subjects,��� Journal of the American Society of Echocardiography 12, no. 6 (1999): 476���483, https://doi.org/10.1016/S0894���7317(99)70084���2.
  55. A. J. Labovitz, V. E. Noble, M. Bierig, et al., ���Focused Cardiac Ultrasound in the Emergent Setting: A Consensus Statement of the American Society of Echocardiography and American College of Emergency Physicians,��� Journal of the American Society of Echocardiography 23, no. 12 (2010): 1225���1230, https://doi.org/10.1016/J.ECHO.2010.10.005.

Grants

  1. 17K19949/Japan Society for the Promotion of Science
  2. 19K19984/Japan Society for the Promotion of Science

MeSH Term

Humans
Male
Hypovolemia
Adult
Echocardiography, Three-Dimensional
Ventricular Function, Left
Stroke Volume
Heart Ventricles
Lower Body Negative Pressure
Reproducibility of Results
Reference Values

Word Cloud

Created with Highcharts 10.0.0��50p2LBNP<018hypovolemiaLV31enhancedcentral7cardiacleftventriculartwistingmotion3DsevereLBNPpre-max4Centralincreasefindingsechocardiographyuntwistingmaximalpresyncopestageorthostatictoleranceresponseglobalstrain14E/e'PURPOSE:consideredleadcompensatorycontractilityphysiologicalperspectiveplaysimportantrolemaintainingoutputpreviousstudiesshowninconsistentUsingtestedhypothesisMETHODS:Thirteenhealthymen25yearsoldunderwentlowerbodynegativepressureprotocolgradedloadsevaluatedbasichemodynamicsfunctionDopplerIndicescomparedamongbaselinehalfLBNP1/2maxoneconsiderindividualdifferencesRESULTS:ejectionfractionbaseline:62LBNP1/2max:55LBNPpre-max:43%9%meanSDANOVAlongitudinal-20-176-136%7%circumferential-31-26-194%3%weakenedTwist15209��7��=012peakrate-13842-16450-245��/cm88��/cmstrengthenede'112��2 cm/sdecreasedincreasedCONCLUSION:presentindicatehandconventionalechocardiographicindicesappeareddeteriorateIntriguinglyindexfillingparadoxicallyChangesLeftVentricularFunctionAssessedEchocardiographySevereHypovolemiaHealthyHumansmechanicstwistuntwist

Similar Articles

Cited By