Computational Modeling Reveals a Catch-and-Guide Interaction Between Kinesin-1 and Tubulin C-Terminal Tails.

Trini Nguyen, Steven P Gross, Christopher E Miles
Author Information
  1. Trini Nguyen: Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA. ORCID
  2. Steven P Gross: Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA. ORCID
  3. Christopher E Miles: Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA. ORCID

Abstract

The delivery of intracellular cargoes by kinesins is modulated at scales ranging from the geometry of the microtubule networks down to interactions with individual tubulins and their code. The complexity of the tubulin code and the difficulty in directly observing motor-tubulin interactions have hindered progress in pinpointing the precise mechanisms by which kinesin's function is modulated. As one such example, past experiments show that cleaving tubulin C-terminal tails (CTTs) lowers kinesin-1's processivity and velocity on microtubules, but how these CTTs intertwine with kinesin's processive cycle remains unclear. In this work, we formulate and interrogate several plausible mechanisms by which CTTs contribute to and modulate kinesin motion. Computational modeling bridges the gap between effective transport observations (processivity, velocities) and microscopic mechanisms. Ultimately, we find that a guiding mechanism can best explain the observed differences in processivity and velocity. Altogether, our work adds a new understanding of how the CTTs and their modulation via the tubulin code may steer intracellular traffic in both health and disease.

Keywords

References

  1. K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of Axonal Transport in Neurodegenerative Diseases,” Annual Review of Neuroscience 31 (2008): 151–173, https://doi.org/10.1146/annurev.neuro.31.061307.090711.
  2. K. J. Verhey and J. W. Hammond, “Traffic Control: Regulation of Kinesin Motors,” Nature Reviews Molecular Cell Biology 10, no. 11 (2009): 765–777, https://doi.org/10.1038/nrm2782.
  3. L. Balabanian, A. R. Chaudhary, and A. G. Hendricks, “Traffic Control Inside the Cell: Microtubule‐Based Regulation of Cargo Transport,” Biochemist 40, no. 2 (2018): 14–17, https://doi.org/10.1042/BIO04002014.
  4. E. Nogales, S. Wolf, and K. Downing, “Structure of the Alpha beta Tublin Dimer by electron Crystallography,” Nature 391, no. 6663 (1998): 199–203, https://doi.org/10.1038/34465.
  5. C. Janke and M. Magiera, “The Tubulin Code and Its Role in Controlling Microtubule Properties and Functions,” Nature Reviews. Molecular Cell Biology 21, no. 6 (2020): 307–326, https://doi.org/10.1038/s41580‐020‐0214‐3.
  6. Y. Konishi and M. Setou, “Tubulin Tyrosination Navigates the Kinesin‐1 Motor Domain to Axons,” Nature Neuroscience 12 (2009): 559–567, https://doi.org/10.1038/nn.2314.
  7. J. W. Hammond, C. F. Huang, S. Kaech, C. Jacobson, G. Banker, and K. J. Verhey, “Posttranslational Modfications of Tubulin and the Polarized Transport of Kinesin‐1 in Neurons,” Molecular Biology of the Cell 21, no. 4 (2009): 572–583, https://doi.org/10.1091/mbc.e09‐01‐0044.
  8. E. D. McKenna, S. L. Sarbanes, S. W. Cummings, and A. Roll‐Mecak, “The Tubulin Code, From Molecules to Health and Disease,” Annual Review of Cell and Developmental Biology 39 (2023): 331–361, https://doi.org/10.1146/annurev‐cellbio‐030123‐032748.
  9. O. Wattanathamsan and P. Varisa, “Post‐Translational Modifications of Tubulin: Their Role in Cancers and the Regulation of Signaling Molecules,” Cancer Gene Therapy 30, no. 4 (2023): 521–528, https://doi.org/10.1038/s41417‐021‐00396‐4.
  10. Z. Wang and M. P. Sheetz, “The C‐Terminus of Tubulin Increases Cytoplasmic Dynein and Kinesin Processivity,” Biophysical Journal 78, no. 4 (2000): 1955–1964, https://doi.org/10.1016/S0006‐3495(00)76743‐9.
  11. P. K. Marya, Z. Syed, P. E. Fraylich, and P. A. M. Eagles, “Kinesin and Tau Bind to Distinct Sites on Microtubules,” Journal of Cell Science 107, no. 1 (1994): 339–344, https://doi.org/10.1242/jcs.107.1.339.
  12. M. Sirajuddin, L. Rice, and R. Vale, “Regulation of Microtubule Motors by Tubulin Isotypes and Post‐Translational Modifications,” Nature Cell Biology 16, no. 4 (2014): 335–344, https://doi.org/10.1038/ncb2920.
  13. N. Tajielyato, L. Li, Y. Peng, J. Alper, and E. Alexov, “E‐Hooks Provide Guidance and a Soft Landing for the Microtubule Binding Domain of Dynein,” Scientific Reports 8 (2018): 13266, https://doi.org/10.1038/s41598‐018‐31480‐9.
  14. Y. Mizuhara and M. Takano, “Biased Brownian Motion of KIF1A and the Role of tubulin's C‐Terminal Tail Studied by Molecular Dynamics Simulation,” International Journal of Molecular Sciences 22, no. 4 (2021): 1547, https://doi.org/10.3390/ijms22041547.
  15. X.‐X. Shi, Y.‐B. Fu, S.‐K. Guo, P.‐Y. Wang, H. Chen, and P. Xie, “Investigating Role of Conformational Changes of Microtubule in Regulating Its Binding Affinity to Kinesin by All‐Atom Molecular Dynamics Simulation,” Proteins 86, no. 11 (2018): 1127–1139, https://doi.org/10.1002/prot.25592.
  16. A. Pan, A. Pan, B. R. Brooks, and X. Wu, “Molecular Simulation Study on the Walking Mechanism of Kinesin Dimers on Microtubules,” Current Advances in Chemistry and Biochemistry 1 (2021): 49–64, https://doi.org/10.9734/bpi/cacb/v1/6918d.
  17. Y.‐Z. Geng, L.‐A. Lu, N. Jia, B.‐B. Zhang, and Q. Ji, “Kinesin‐Microtubule Interaction Reveals the Mechanism of Kinesin‐1 for Discriminating the Binding Site on Microtubule,” Chinese Physics B 32, no. 10 (2023): 108701, https://doi.org/10.1088/1674‐1056/acdfc1.
  18. A. Yildiz, M. Tomishige, R. Vale, and P. Selvin, “Kinesin Walks Hand‐Over‐Hand,” Science (New York, N.Y.) 303, no. 5658 (2004): 676–678, https://doi.org/10.1126/science.1093753.
  19. S. M. Block, “Kinesin Motor Mechanics: Binding, Stepping, Tracking, Gating, and Limping,” Biophysical Journal 92 (2007): 2986–2995, https://doi.org/10.1529/biophysj.106.100677.
  20. H. Sosa, E. J. G. Peterman, W. E. Moerner, and L. S. B. Goldstein, “ADP‐Induced Rocking of the Kinesin Motor Domain Revealed by Single‐Molecule Fluorescence Polarization Microsopy,” Nature Structural Biology 8, no. 6 (2001): 540–544, https://doi.org/10.1038/88611.
  21. D. T. Gillespie, “Stochastic Simulation of Chemical Kinetics,” Annual Review of Physical Chemistry 58 (2007): 35–55, https://doi.org/10.1146/annurev.physchem.58.032806.104637.
  22. K. J. Mickolajczyk, N. C. Deffenbaugh, J. Ortega Arroyo, and W. O. Hancock, “Kinetics of Nucleotide‐Dependent Structural Transitions in the Kinesin‐1 Hydrolysis Cycle,” Proceedings of the National Academy of Sciences of the United States of America 112, no. 52 (2015): E7186–E7193, https://doi.org/10.1073/pnas.1517638112.
  23. B. E. Clancy, W. M. Behnke‐Parks, J. O. L. Andreasson, S. S. Rosenfeld, and S. M. Block, “A Universal Pathway for Kinesin Stepping,” Nature Structural & Molecular Biology 18, no. 9 (2011): 1020–1027, https://doi.org/10.1038/nsmb.2104.
  24. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied With Optical Tweezers,” Nature 348 (1990): 348–352, https://doi.org/10.1038/348348a0.
  25. M. Vershinin, B. C. Carter, D. S. Razafsky, S. J. King, and S. P. Gross, “Multiple‐Motor Based Transport and Its Regulation by Tau,” Proceedings of the National Academy of Sciences 104 (2007): 87–92, https://doi.org/10.1073/pnas.0607919104.
  26. J. Xu, Z. Shu, S. J. King, and S. P. Gross, “Tuning Multiple Motor Travel via Single Motor Velocity,” Traffic 13, no. 9 (2012): 1198–1205, https://doi.org/10.1111/j.1600‐0854.2012.01385.x.
  27. Q. Li, S. J. King, A. Gopinathan, and J. Xu, “Quantitative Determination of the Probability of Multiple‐Motor Transport in Bead‐Based Assays,” Biophysical Journal 110 (2016): 2720–2728, https://doi.org/10.1016/j.bpj.2016.05.015.
  28. D. Hackney, “Kinesin ATPase: Rate‐Limiting ADP Release,” Proceedings of the National Academy of Sciences of the United States of America 85, no. 17 (1988): 6314–6318, https://doi.org/10.1073/pnas.85.17.6314.
  29. T. Shimizu, E. Sablin, R. D. Vale, R. Fletterick, E. Pechatnikova, and E. W. Taylor, “Expression, Purification, ATPase Properties, and Microtubule‐Binding Properties of the Ncd Motor Domain,” American Chemistry Society 34, no. 40 (1995): 13259–13266, https://doi.org/10.1021/bi00040a042.
  30. W. R. Schief, R. H. Clark, and A. H. Crevenna, “Inhibition of Kinesin Motility by ADP and Phosphate Supports a Hand‐Over‐Hand Mechanism,” Proceedings of the National Academy of Sciences 101, no. 5 (2004): 1183–1188, https://doi.org/10.1073/pnas.0304369101.
  31. R. A. Cross, “The Kinetic Mechanism of Kinesin,” Trends in Biochemical Sciences 29, no. 6 (2004): 301–309, https://doi.org/10.1016/j.tibs.2004.04.010.
  32. M. L. Kutys, J. Fricks, and W. O. Hancock, “Monte Carlo Analysis of Neck Linker Extension in Kinesin Molecular Motors,” Public Library of Science Computational Biology 6, no. 11 (2010): e1000980, https://doi.org/10.1371/journal.pcbi.1000980.
  33. A. Toleikis, N. J. Carter, and R. A. Cross, “Backstepping Mechanism of Kinesin‐1,” Biophysical Journal 119, no. 10 (2020): 1984–1994, https://doi.org/10.1016/j.bpj.2020.09.034.
  34. J. Kerssemakers, J. Howard, H. Hess, and S. Diez, “The Distance That Kinesin‐1 Holds Its Cargo From the Microtubule Surface Measured by Fluorescence Interference Contrast Microscopy,” Proceedings of the National Academy of Sciences 103, no. 43 (2006): 15812–15817, https://doi.org/10.1073/pnas.0510400103.
  35. M. V. Sataric, D. L. Sekulic, S. Zdravkovic, and N. M. Ralevic, “A Biophysical Model of How α–Tubulin Carboxy–Terminal Tails Tune Kinesin–1 Processivity Along Microtubule,” Journal of Theoretical Biology 420 (2017): 152–157, https://doi.org/10.1016/j.jtbi.2017.03.012.
  36. A. Marx, J. Müller, E.‐M. Mandelkow, A. Hoenger, and E. Mandelkow, “Interaction of Kinesin Motors, Microtubules, and Maps,” Journal of Muscle Research & Cell Motility 27, no. 2 (2006): 125–137, https://doi.org/10.1007/s10974‐005‐9051‐4.
  37. Z. Zhang, Y. Goldtzvik, and D. Thirumalai, “Parsing the Roles of Neck‐Linker Docking and Tethered Head Diffusion in the Stepping Dynamics of Kinesin,” Proceedings of the National Academy of Sciences 114 (2017): E9838–E9845, https://doi.org/10.1073/pnas.1706014114.
  38. E. C. Thomas and J. K. Moore, “Selective Regulation of Kinesin‐5 Function by β‐Tubulin Carboxy‐Terminal Tails,” Journal of Cell Biology 224, no. 3 (2025): e202405115, https://doi.org/10.1083/jcb.202405115.
  39. Y. Liu and Z. Zhang, “Origin of Tradeoff Between Movement Velocity and Attachment Duration of Kinesin Motor on a Microtubule,” Chinese Physics B 33, no. 2 (2024): 028708, https://doi.org/10.1088/1674‐1056/ad1177.
  40. K. S. Thorn, J. A. Ubersax, and R. D. Vale, “Engineering the Processive Run Length of the Kinesin Motor,” Journal of Cell Biology 151 (2000): 1093–1100, https://doi.org/10.1083/jcb.151.5.1093.
  41. F. Mitra Shojania, B. R. Janakaloti Narayanareddy, O. Vadpey, et al., “Microtubule C‐Terminal Tails Can Change Characteristics of Motor Force Production,” Traffic 16, no. 10 (2015): 1075–1087, https://doi.org/10.1111/tra.12307.
  42. C. Tucker and L. S. B. Goldstein, “Probing the Kinesin‐Microtubule Interaction,” Journal of Biological Chemistry 272, no. 14 (1997): 9481–9488, https://doi.org/10.1074/jbc.272.14.9481.
  43. M. Bovyn, B. R. J. Narayanareddy, S. Gross, and J. Allard, “Diffusion of Kinesin Motors on Cargo Can Enhance Binding and Run Lengths During Intracellular Transport,” Molecular Biology of the Cell 32, no. 9 (2021): 984–994, https://doi.org/10.1091/mbc.e20‐10‐0658.
  44. T. Nguyen, B. R. J. Narayanareddy, S. P. Gross, and C. E. Miles, “Competition Between Physical Search and a Weak‐to‐Strong Transition Rate‐Limits Kinesin Binding Times,” PLoS Computational Biology 20, no. 5 (2024): e1012158, https://doi.org/10.1371/journal.pcbi.1012158.
  45. M. Andreu‐Carbó, C. Egoldt, M.‐C. Velluz, and C. Aumeier, “Microtubule Damage Shapes the Acetylation Gradient,” Nature Communications 15, no. 1 (2024): 2029, https://doi.org/10.1038/s41467‐024‐46379‐5.
  46. K. P. Wall, H. Hart, T. Lee, C. Page, T. L. Hawkins, and L. E. Hough, “C‐Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties,” Biophysical Journal 119 (2020): 2219–2230, https://doi.org/10.1016/j.bpj.2020.09.040.
  47. H. Jans, X. Liu, L. Austin, G. Maes, and Q. Huo, “Dynamic Light Scattering as a Powerful Tool for Gold Nanoparticle Bioconjugation and Biomolecular Binding Studies,” Analytical Chemistry 81 (2009): 9425–9432, https://doi.org/10.1021/ac901822w.
  48. S. A. Sisson, Y. Fan, and M. M. Tanaka, “Sequential Monte Carlo Without Likelihoods,” Proceedings of the National Academy of Sciences 104, no. 6 (2007): 1760–1765, https://doi.org/10.1073/pnas.0607208104.

Grants

  1. /National Science Foundation
  2. /NIH HHS
  3. /Hellman Foundation

MeSH Term

Kinesins
Tubulin
Microtubules
Humans
Computer Simulation
Animals
Protein Binding

Chemicals

Kinesins
Tubulin

Word Cloud

Created with Highcharts 10.0.0tubulinCTTscodemechanismsprocessivityintracellularmodulatedinteractionskinesin'svelocitymicrotubulesworkkinesinComputationalmodelingdeliverycargoeskinesinsscalesranginggeometrymicrotubulenetworksindividualtubulinscomplexitydifficultydirectlyobservingmotor-tubulinhinderedprogresspinpointingprecisefunctiononeexamplepastexperimentsshowcleavingC-terminaltailslowerskinesin-1'sintertwineprocessivecycleremainsunclearformulateinterrogateseveralplausiblecontributemodulatemotionbridgesgapeffectivetransportobservationsvelocitiesmicroscopicUltimatelyfindguidingmechanismcanbestexplainobserveddifferencesAltogetheraddsnewunderstandingmodulationviamaysteertraffichealthdiseaseModelingRevealsCatch-and-GuideInteractionKinesin-1TubulinC-TerminalTailscomputationalcytoskeleton

Similar Articles

Cited By