Warming Seawater Temperature and Nutrient Depletion Alters Microbial Community Composition on a Foundational Canopy Kelp Species.

Nichos B Molnar, Brooke L Weigel, Robin J Fales, Catherine A Pfister
Author Information
  1. Nichos B Molnar: The College, The University of Chicago, Chicago, Illinois, USA. ORCID
  2. Brooke L Weigel: University of Washington, Friday Harbor Labs, Friday Harbor, Washington, USA. ORCID
  3. Robin J Fales: University of Washington, Friday Harbor Labs, Friday Harbor, Washington, USA. ORCID
  4. Catherine A Pfister: The College, The University of Chicago, Chicago, Illinois, USA. ORCID

Abstract

Warming seawater temperatures and low dissolved inorganic nitrogen (DIN) levels are environmental stressors that affect the health and abundance of marine macroalgae and their microbiomes. Nereocystis luetkeana, a canopy-forming species of brown algae that forms critical habitat along the Pacific coast, has declined in regions impacted by these synergistic stressors. Little is known about how these environmental factors affect the microbiome of N. luetkeana, which could affect nutrient availability, vitamin production, and stress response for the host. We experimentally tested the interactive effects of three seawater temperatures (13��C, 16��C, 21��C) crossed with abundant and replete DIN levels on the diversity and composition of blade-associated microbiomes from two spatially separated kelp host populations. We hypothesised that kelp microbiomes exposed to high temperatures and low DIN would experience the lowest diversity. Contrary to our hypothesis, the highest temperature treatment resulted in the largest increase in microbial diversity, and microbiomes in all temperature treatments experienced a decrease in previously dominant taxa. Temperature had a larger effect than DIN on the kelp microbiome in all cases. The disruption to the kelp microbiome across all temperatures, especially at the highest temperature, suggests that the effects of warming on N. luetkeana extend to the microbiome.

Keywords

References

  1. Bacteriol Rev. 1965 Mar;29:9-24 [PMID: 14295987]
  2. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  3. J Phycol. 2023 Jun;59(3):538-551 [PMID: 37005360]
  4. Front Microbiol. 2016 Feb 18;7:161 [PMID: 26925036]
  5. Genomics. 2018 Sep;110(5):231-238 [PMID: 29074368]
  6. Environ Microbiol. 2011 Feb;13(2):529-37 [PMID: 20946533]
  7. Sci Total Environ. 2023 Jun 25;879:162919 [PMID: 36958561]
  8. Sci Rep. 2020 Feb 21;10(1):3186 [PMID: 32081970]
  9. Sci Rep. 2019 May 2;9(1):6834 [PMID: 31048787]
  10. Mol Ecol. 2018 Apr;27(8):1966-1979 [PMID: 29524281]
  11. mSphere. 2024 Jan 30;9(1):e0035523 [PMID: 38054712]
  12. Environ Microbiol Rep. 2021 Apr;13(2):176-184 [PMID: 33372322]
  13. Int J Syst Evol Microbiol. 2023 Feb;73(1): [PMID: 36748596]
  14. Int J Syst Evol Microbiol. 2014 Mar;64(Pt 3):719-724 [PMID: 24174219]
  15. Microbiologyopen. 2013 Apr;2(2):338-49 [PMID: 23568841]
  16. New Phytol. 2020 Feb;225(4):1447-1454 [PMID: 31400287]
  17. Sci Adv. 2023 May 10;9(19):eade8352 [PMID: 37163596]
  18. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13785-13790 [PMID: 27849580]
  19. Ecol Evol. 2021 Oct 06;11(21):15004-15019 [PMID: 34765156]
  20. J Phycol. 2022 Dec;58(6):815-828 [PMID: 36308470]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. mSystems. 2022 Oct 26;7(5):e0059222 [PMID: 35993708]
  24. J Phycol. 2023 Oct;59(5):893-907 [PMID: 37497792]
  25. Nat Microbiol. 2017 Aug 24;2:17121 [PMID: 28836573]
  26. Mol Ecol Resour. 2017 Sep;17(5):931-942 [PMID: 27997751]
  27. Microbiome. 2022 Mar 24;10(1):52 [PMID: 35331334]
  28. PLoS One. 2013 Jun 19;8(6):e67480 [PMID: 23840715]
  29. J Phycol. 2021 Dec;57(6):1777-1791 [PMID: 34570392]
  30. Front Microbiol. 2022 Jan 17;12:765091 [PMID: 35111137]
  31. PLoS One. 2018 Feb 23;13(2):e0192772 [PMID: 29474389]
  32. Ecology. 2019 Oct;100(10):e02798 [PMID: 31233610]
  33. mBio. 2020 Mar 3;11(2): [PMID: 32127450]
  34. Nat Rev Microbiol. 2024 Aug;22(8):460-475 [PMID: 38438489]
  35. FEMS Microbiol Ecol. 2018 Apr 1;94(4): [PMID: 29471328]
  36. PLoS One. 2021 Feb 17;16(2):e0229703 [PMID: 33596204]
  37. J Phycol. 2020 Dec;56(6):1534-1541 [PMID: 32666523]
  38. Microb Ecol. 2023 Nov;86(4):2574-2582 [PMID: 37415044]
  39. Front Microbiol. 2023 Jan 06;13:1050939 [PMID: 36687663]
  40. Ecol Appl. 2022 Oct;32(7):e2673 [PMID: 35584048]
  41. Biol Lett. 2018 Jun;14(6): [PMID: 29925564]
  42. FEMS Microbiol Ecol. 2015 Oct;91(10): [PMID: 26362925]
  43. Syst Appl Microbiol. 2017 Sep;40(6):370-382 [PMID: 28641923]
  44. Microbiol Mol Biol Rev. 2019 Oct 2;83(4): [PMID: 31578217]
  45. Microb Ecol. 2023 May;85(4):1265-1275 [PMID: 35589992]
  46. Front Microbiol. 2017 Mar 29;8:472 [PMID: 28424662]
  47. Ecol Evol. 2023 Jan 24;13(1):e9753 [PMID: 36713485]
  48. Environ Microbiome. 2022 Nov 16;17(1):55 [PMID: 36384808]
  49. FEMS Microbiol Rev. 2013 May;37(3):462-76 [PMID: 23157386]
  50. Front Microbiol. 2019 Feb 26;10:346 [PMID: 30863387]
  51. Sci Rep. 2019 Dec 27;9(1):19835 [PMID: 31882618]
  52. PLoS Comput Biol. 2014 Apr 03;10(4):e1003531 [PMID: 24699258]
  53. Proc Biol Sci. 2019 Feb 13;286(1896):20181887 [PMID: 30963929]
  54. mSystems. 2022 Jun 28;7(3):e0142221 [PMID: 35642511]
  55. Nature. 2005 Nov 3;438(7064):90-3 [PMID: 16267554]
  56. Environ Microbiol Rep. 2024 Jun;16(3):e13270 [PMID: 38778582]
  57. PLoS One. 2024 Mar 29;19(3):e0296622 [PMID: 38551914]

Grants

  1. /Washington State Legislature
  2. G17AC000218/U.S. Geological Survey
  3. /University of Chicago

MeSH Term

Microbiota
Kelp
Seawater
Nitrogen
Temperature
Nutrients
Phaeophyceae
Bacteria

Chemicals

Nitrogen

Word Cloud

Created with Highcharts 10.0.0microbiometemperaturesDINmicrobiomeskelpaffectluetkeanadiversitytemperatureWarmingseawaterlowlevelsenvironmentalstressorsspeciesNnutrienthosteffectshighestTemperaturewarmingdissolvedinorganicnitrogenhealthabundancemarinemacroalgaeNereocystiscanopy-formingbrownalgaeformscriticalhabitatalongPacificcoastdeclinedregionsimpactedsynergisticLittleknownfactorsavailabilityvitaminproductionstressresponseexperimentallytestedinteractivethree13��C16��C21��Ccrossedabundantrepletecompositionblade-associatedtwospatiallyseparatedpopulationshypothesisedexposedhighexperiencelowestContraryhypothesistreatmentresultedlargestincreasemicrobialtreatmentsexperienceddecreasepreviouslydominanttaxalargereffectcasesdisruptionacrossespeciallysuggestsextendSeawaterNutrientDepletionAltersMicrobialCommunityCompositionFoundationalCanopyKelpSpeciesfoundationaldysbiosisenrichmentocean

Similar Articles

Cited By