Highly Optimized Simulation of Atomic Resolution Cell-Like Protein Environment.

Andrii M Tytarenko, Amar Singh, Vineeth Kumar Ambati, Matthew M Copeland, Petras J Kundrotas, Randal Halfmann, Pavlo O Kasyanov, Eugene A Feinberg, Ilya A Vakser
Author Information
  1. Andrii M Tytarenko: Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine.
  2. Amar Singh: Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States. ORCID
  3. Vineeth Kumar Ambati: Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States.
  4. Matthew M Copeland: Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States. ORCID
  5. Petras J Kundrotas: Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States. ORCID
  6. Randal Halfmann: Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States.
  7. Pavlo O Kasyanov: Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine.
  8. Eugene A Feinberg: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States.
  9. Ilya A Vakser: Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States. ORCID

Abstract

Computational approaches can provide details of molecular mechanisms in a crowded environment inside cells. Protein docking predicts stable configurations of molecular complexes, which correspond to deep energy minima. Systematic docking approaches, such as those based on fast Fourier transform (FFT), also map the entire intermolecular energy landscape by determining the position and depth of the full spectrum of the energy minima. Such mapping allows speeding up simulations by precalculating the intermolecular energy values. Our earlier study combined FFT docking with the Monte Carlo protocol, enabling simulation of cell-size, crowded protein systems with seconds, and longer trajectories at atomic resolution, several orders of magnitude longer than those achievable by alternative approaches. In this study, we present a further drastic extension of the modeling capabilities by parallelized implementation of the simulation protocol. The procedure was applied to a panel of Death Fold Domains that form nucleated polymers in human innate immune signaling, recapitulating their homooligomerization tendencies and providing insights into the molecular mechanisms of polymer nucleation. The parallelized protocol allows extension of the simulation trajectories by orders of magnitude beyond the previously reported implementation, reaching into the uncharted territory of atomic resolution simulation of cell-sized systems.

References

  1. Bioinformatics. 2015 Mar 15;31(6):926-32 [PMID: 25398609]
  2. Proteins. 2015 Dec;83(12):2170-85 [PMID: 26404856]
  3. BMC Bioinformatics. 2019 Sep 14;20(1):473 [PMID: 31521110]
  4. Cell. 2013 Apr 11;153(2):287-92 [PMID: 23582320]
  5. ACS Omega. 2019 Nov 27;4(24):20654-20664 [PMID: 31858051]
  6. Nat Methods. 2011 Dec 25;9(2):173-5 [PMID: 22198341]
  7. J Chem Phys. 2024 Sep 7;161(9): [PMID: 39225532]
  8. Protein Sci. 2022 Jul;31(7):e4325 [PMID: 35762711]
  9. Protein Sci. 2013 Jun;22(6):734-44 [PMID: 23526684]
  10. Curr Opin Struct Biol. 2022 Apr;73:102340 [PMID: 35219215]
  11. Sci Rep. 2021 May 19;11(1):10594 [PMID: 34011998]
  12. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2195-9 [PMID: 1549581]
  13. Biophys J. 2005 Nov;89(5):2960-71 [PMID: 16113107]
  14. Biophys Rev. 2024 Jun 26;16(3):297-314 [PMID: 39345796]
  15. Nucleic Acids Res. 2020 Jan 8;48(D1):D570-D578 [PMID: 31696235]
  16. J Comput Chem. 2020 Jun 5;41(15):1436-1447 [PMID: 32149420]
  17. Chem Rev. 2024 Apr 10;124(7):3932-3977 [PMID: 38535831]
  18. Front Mol Biosci. 2022 Nov 08;9:1031225 [PMID: 36425657]
  19. J Chem Theory Comput. 2013 Oct 1;9(10): [PMID: 24187527]
  20. Methods Mol Biol. 2024;2714:101-112 [PMID: 37676594]
  21. Int J Mol Sci. 2023 Jul 06;24(13): [PMID: 37446325]
  22. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  23. Nucleic Acids Res. 2017 Jan 4;45(D1):D170-D176 [PMID: 27899574]
  24. Sci Adv. 2023 Jul 21;9(29):eadg9141 [PMID: 37478178]
  25. Elife. 2014 Apr 08;3:e01370 [PMID: 24714491]
  26. Proteins. 2017 May;85(5):924-937 [PMID: 28168752]
  27. Nature. 2024 Jun;630(8016):493-500 [PMID: 38718835]
  28. Proteins. 2007 Dec 1;69(4):845-51 [PMID: 17803215]
  29. Proteins. 2021 Dec;89(12):1800-1823 [PMID: 34453465]
  30. Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2210249119 [PMID: 36191203]
  31. Annu Rev Biophys. 2008;37:247-63 [PMID: 18573081]
  32. Biophys Rev. 2013 Jun;5(2):99-108 [PMID: 28510161]
  33. J Chem Phys. 2021 Feb 28;154(8):084101 [PMID: 33639768]
  34. J Phys Chem B. 2012 Jul 26;116(29):8375-82 [PMID: 22280505]
  35. BMC Bioinformatics. 2010 Aug 18;11:431 [PMID: 20718988]
  36. Biophys J. 2014 Oct 21;107(8):1785-1793 [PMID: 25418159]
  37. Nat Methods. 2015 Sep;12(9):838-40 [PMID: 26192083]
  38. Protein Eng. 1996 Jan;9(1):37-41 [PMID: 9053900]
  39. Nat Commun. 2020 Nov 13;11(1):5760 [PMID: 33188202]
  40. J Mol Biol. 2020 Jan 17;432(2):508-522 [PMID: 31786268]
  41. Acc Chem Res. 2015 Feb 17;48(2):414-22 [PMID: 25625937]
  42. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11815-20 [PMID: 21730176]
  43. Curr Opin Struct Biol. 2019 Apr;55:59-65 [PMID: 30999240]
  44. J Chem Phys. 2010 Oct 21;133(15):155101 [PMID: 20969427]
  45. J Chem Theory Comput. 2022 Mar 8;18(3):2016-2032 [PMID: 35213808]
  46. J Chem Phys. 2013 Sep 28;139(12):121701 [PMID: 24089712]
  47. J Mol Biol. 2016 Jul 31;428(15):2943-64 [PMID: 27255863]
  48. Curr Opin Struct Biol. 2020 Oct;64:160-165 [PMID: 32836051]

MeSH Term

Humans
Monte Carlo Method
Proteins
Molecular Dynamics Simulation
Molecular Docking Simulation
Fourier Analysis

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0energysimulationapproachesmoleculardockingprotocolmechanismscrowdedProteinminimaFFTintermolecularallowsstudysystemslongertrajectoriesatomicresolutionordersmagnitudeextensionparallelizedimplementationComputationalcanprovidedetailsenvironmentinsidecellspredictsstableconfigurationscomplexescorresponddeepSystematicbasedfastFouriertransformalsomapentirelandscapedeterminingpositiondepthfullspectrummappingspeedingsimulationsprecalculatingvaluesearliercombinedMonteCarloenablingcell-sizeproteinsecondsseveralachievablealternativepresentdrasticmodelingcapabilitiesprocedureappliedpanelDeathFoldDomainsformnucleatedpolymershumaninnateimmunesignalingrecapitulatinghomooligomerizationtendenciesprovidinginsightspolymernucleationbeyondpreviouslyreportedreachingunchartedterritorycell-sizedHighlyOptimizedSimulationAtomicResolutionCell-LikeEnvironment

Similar Articles

Cited By

No available data.