A comparison of Gaussian processes and polynomial chaos emulators in the context of haemodynamic pulse-wave propagation modelling.

L Mihaela Paun, Mitchel J Colebank, Dirk Husmeier
Author Information
  1. L Mihaela Paun: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK. ORCID
  2. Mitchel J Colebank: Department Biomedical Engineering, University of California, Irvine, CA, USA. ORCID
  3. Dirk Husmeier: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK. ORCID

Abstract

Computational modelling of the cardiovascular system is a promising future direction for patient-specific healthcare. However, the computational cost of these simulators is a bottleneck for their practical use in clinic for real-time . Emulation can overcome this, yet an extensive investigation into cardiovascular emulators is warranted. In this study, we emulate two one-dimensional haemodynamics models of the pulmonary circulation and compare two common emulation strategies: Gaussian processes (GPs) and polynomial chaos expansions (PCEs). We start by reducing the parameter space of the models through global sensitivity analysis, and then compare both emulation strategies using a multivariate, time-series output quantity of interest and a reduced representation using principal component analysis. We compare the emulators in both forward emulation on test data, as well as in their ability to infer parameters in the inverse problem. Our results indicate that GPs slightly outperform PCEs consistently across every comparison, and that a similar performance is obtained for the emulators of the time-dependent output and reduced output.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

Keywords

References

  1. J Biomech. 2017 Jan 4;50:188-194 [PMID: 27890534]
  2. Cardiovasc Eng Technol. 2021 Apr;12(2):127-143 [PMID: 33415699]
  3. Int J Numer Method Biomed Eng. 2017 Dec;33(12): [PMID: 28337862]
  4. Int J Numer Method Biomed Eng. 2014 Dec;30(12):1679-704 [PMID: 25377937]
  5. Stat Interface. 2008;1(1):179-195 [PMID: 18978950]
  6. Nat Comput Sci. 2021 May;1(5):313-320 [PMID: 38217216]
  7. Ann Biomed Eng. 2000 Nov-Dec;28(11):1281-99 [PMID: 11212947]
  8. J R Soc Interface. 2020 Dec;17(173):20200886 [PMID: 33353505]
  9. Biomech Model Mechanobiol. 2019 Feb;18(1):219-243 [PMID: 30284059]
  10. Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240222 [PMID: 40078149]
  11. Int J Numer Method Biomed Eng. 2016 Aug;32(8): [PMID: 26475178]
  12. Int J Numer Method Biomed Eng. 2015 Oct;31(10): [PMID: 26017545]
  13. J Cardiovasc Comput Tomogr. 2024 May-Jun;18(3):251-258 [PMID: 38378313]
  14. Ann Biomed Eng. 2015 Jun;43(6):1443-60 [PMID: 25832485]
  15. Math Biosci. 2021 Jul;337:108593 [PMID: 33865847]
  16. Biomech Model Mechanobiol. 2024 Dec;23(6):1909-1931 [PMID: 39073691]
  17. Proc Inst Mech Eng H. 2020 Nov;234(11):1312-1329 [PMID: 32720558]
  18. Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110550 [PMID: 23277607]
  19. Int J Numer Method Biomed Eng. 2021 Nov;37(11):e3242 [PMID: 31355521]
  20. Med Biol Eng Comput. 2009 Feb;47(2):131-41 [PMID: 18543011]
  21. J R Soc Interface. 2021 Feb;18(175):20200802 [PMID: 33561376]

Grants

  1. /Engineering and Physical Sciences Research Council
  2. /NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0emulatorsemulationmodellingcompareGaussianprocessespolynomialchaosanalysisoutputcardiovascularhealthcaretwomodelspulmonaryGPsexpansionsPCEsparametersensitivityusingreducedcomparisonpropagationComputationalsystempromisingfuturedirectionpatient-specificHowevercomputationalcostsimulatorsbottleneckpracticaluseclinicreal-timeEmulationcanovercomeyetextensiveinvestigationwarrantedstudyemulateone-dimensionalhaemodynamicscirculationcommonstrategies:startreducingspaceglobalstrategiesmultivariatetime-seriesquantityinterestrepresentationprincipalcomponentforwardtestdatawellabilityinferparametersinverseproblemresultsindicateslightlyoutperformconsistentlyacrosseverysimilarperformanceobtainedtime-dependentThisarticlepartthemeissue'UncertaintyquantificationbiologicalsystemsPart1'contexthaemodynamicpulse-waveestimationpulse–wave

Similar Articles

Cited By