Bayesian inference informed by parameter subset selection for a minimal PBPK brain model.

Kamala Dadashova, Ralph C Smith, Mansoor A Haider, Brian J Reich
Author Information
  1. Kamala Dadashova: Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA. ORCID
  2. Ralph C Smith: Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
  3. Mansoor A Haider: Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
  4. Brian J Reich: Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.

Abstract

Physiologically based pharmacokinetic (PBPK) models use a mechanistic approach to delineate the processes of the absorption, distribution, metabolism and excretion of biological substances in various species. These models generally comprise coupled systems of ordinary differential equations involving multiple states and a moderate to a large number of parameters. Such models contain compartments corresponding to various organs or tissues in the body. Before employing the models for treatment, the quantification of uncertainties for the parameters, based on information or data for a specific response, is necessary. This requires the determination of identifiable parameters, which are uniquely determined by data, and uncertainty analysis based on frequentist or Bayesian inference. We introduce a strategy to integrate parameter subset selection, based on identifiability analysis, with Bayesian inference. This approach further refines the subset of identifiable parameters, quantifies parameter and response uncertainties, enhances model prediction and reduces computational cost.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

Keywords

References

  1. CPT Pharmacometrics Syst Pharmacol. 2013 Aug 14;2:e63 [PMID: 23945604]
  2. Drug Metab Dispos. 2020 Oct;48(10):903-916 [PMID: 32665416]
  3. Bull Math Biol. 2024 Jan 3;86(2):12 [PMID: 38170402]
  4. J Pharmacokinet Pharmacodyn. 2021 Dec;48(6):861-871 [PMID: 34378151]
  5. Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240219 [PMID: 40078152]
  6. CPT Pharmacometrics Syst Pharmacol. 2023 Mar;12(3):300-310 [PMID: 36661183]
  7. Regul Toxicol Pharmacol. 2006 Jun;45(1):44-54 [PMID: 16442684]
  8. Bull Math Biol. 2021 Mar 22;83(5):47 [PMID: 33751272]
  9. Toxicol Lett. 2017 Oct 5;280:79-91 [PMID: 28818579]
  10. Risk Anal. 1994 Aug;14(4):521-31 [PMID: 7972956]

Grants

  1. 2342344/North Carolina Academy of Science

MeSH Term

Bayes Theorem
Brain
Humans
Models, Biological
Uncertainty
Pharmacokinetics
Animals
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0basedparametermodelsparametersBayesianinferencesubsetselectionpharmacokineticPBPKapproachbiologicalvarioussystemsquantificationuncertaintiesdataresponseidentifiableanalysisidentifiabilitymodelPhysiologicallyusemechanisticdelineateprocessesabsorptiondistributionmetabolismexcretionsubstancesspeciesgenerallycomprisecoupledordinarydifferentialequationsinvolvingmultiplestatesmoderatelargenumbercontaincompartmentscorrespondingorganstissuesbodyemployingtreatmentinformationspecificnecessaryrequiresdeterminationuniquelydetermineduncertaintyfrequentistintroducestrategyintegraterefinesquantifiesenhancespredictionreducescomputationalcostThisarticlepartthemeissue'UncertaintyhealthcarePart1'informedminimalbrainphysiologicallymodelling

Similar Articles

Cited By