Decoding uncertainty for clinical decision-making.

Krasimira Tsaneva-Atanasova, Giulia Pederzanil, Marianna Laviola
Author Information
  1. Krasimira Tsaneva-Atanasova: Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, UK. ORCID
  2. Giulia Pederzanil: Computational Science Laboratory, Informatics Institute, University of Amsterdam, Amsterdam, UK.
  3. Marianna Laviola: Injury, Recovery and Inflammation Sciences Academic Unit, School of Medicine and National Institute for Health and Care Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.

Abstract

In this opinion piece, we examine the pivotal role that uncertainty quantification (UQ) plays in informing clinical decision-making processes. We explore challenges associated with healthcare data and the potential barriers to the widespread adoption of UQ methodologies. In doing so, we highlight how these techniques can improve the precision and reliability of medical evaluations. We delve into the crucial role of understanding and managing the uncertainties present in clinical data (such as measurement error), diagnostic tools and treatment outcomes. We discuss how such uncertainties can impact decision-making in healthcare and emphasize the importance of systematically analysing them. Our goal is to demonstrate how effectively addressing and decoding uncertainties can significantly enhance the accuracy and robustness of clinical decisions, ultimately leading to better patient outcomes and more informed healthcare practices.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

Keywords

References

  1. Math Biosci Eng. 2019 Apr 19;16(5):3512-3536 [PMID: 31499626]
  2. Chaos Solitons Fractals. 2021 May;146:110895 [PMID: 33814733]
  3. J Physiol. 2016 Dec 1;594(23):6833-6847 [PMID: 26990229]
  4. PLoS One. 2023 Aug 30;18(8):e0289930 [PMID: 37647308]
  5. Med Image Anal. 2023 Aug;88:102843 [PMID: 37245435]
  6. Stat Methods Med Res. 2019 Apr;28(4):1079-1093 [PMID: 29254443]
  7. PLoS Comput Biol. 2024 Aug 8;20(8):e1012289 [PMID: 39116026]
  8. PLoS Comput Biol. 2021 Sep 17;17(9):e1009355 [PMID: 34534205]
  9. Neurosurg Focus. 2019 Jul 1;47(1):E15 [PMID: 31261119]
  10. Comput Biol Med. 2020 Oct;125:104011 [PMID: 33091766]
  11. Med Decis Making. 2022 Jan;42(1):28-42 [PMID: 34098793]
  12. Health Data Sci. 2024 Apr 15;4:0126 [PMID: 38645573]
  13. Results Phys. 2022 Apr;35:105375 [PMID: 35280115]
  14. Comput Med Imaging Graph. 2024 Sep;116:102403 [PMID: 38878632]
  15. Radiology. 2024 Feb;310(2):e232781 [PMID: 38349240]
  16. Ann Oper Res. 2022 May 21;:1-48 [PMID: 35645446]
  17. Emerg Infect Dis. 2021;27(3):767-778 [PMID: 33622460]
  18. IEEE Trans Biomed Eng. 2022 Nov;69(11):3472-3483 [PMID: 35476577]
  19. Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200221 [PMID: 33775151]
  20. Front Med (Lausanne). 2024 Aug 12;11:1433372 [PMID: 39188879]
  21. Artif Intell Med. 2024 Apr;150:102830 [PMID: 38553168]
  22. Med Image Anal. 2024 Oct;97:103223 [PMID: 38861770]
  23. J Clin Nurs. 2012 Oct;21(19-20):2722-9 [PMID: 21895816]
  24. Methods. 2021 Jan;185:120-127 [PMID: 31991193]
  25. Clin Cancer Res. 2009 Aug 1;15(15):4806-14 [PMID: 19622575]
  26. Contemp Clin Trials. 2005 Apr;26(2):118-30 [PMID: 15837435]
  27. Med Decis Making. 2019 May;39(4):405-413 [PMID: 31179833]
  28. Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200409 [PMID: 33775138]
  29. Nat Rev Genet. 2016 Apr;17(4):197-206 [PMID: 26972588]
  30. Radiology. 2023 Sep;308(3):e230275 [PMID: 37724961]
  31. J Clin Epidemiol. 2021 Dec;140:149-158 [PMID: 34520847]
  32. Am J Epidemiol. 2007 Apr 1;165(7):762-75 [PMID: 17276976]
  33. Comput Biol Med. 2023 Oct;165:107441 [PMID: 37683529]
  34. Epidemics. 2014 Mar;6:37-45 [PMID: 24593920]

Grants

  1. /Engineering and Physical Sciences Research Council
  2. /NIHR Nottingham Biomedical Research Centre
  3. /EDITH Coordination and Support Action funded by the Digital Program of the European Commission

MeSH Term

Uncertainty
Humans
Clinical Decision-Making

Word Cloud

Created with Highcharts 10.0.0clinicalhealthcareuncertaintyquantificationdecision-makingdatacanuncertaintiesroleUQprecisionmedicaldiagnostictoolsoutcomesmedicineopinionpieceexaminepivotalplaysinformingprocessesexplorechallengesassociatedpotentialbarrierswidespreadadoptionmethodologieshighlighttechniquesimprovereliabilityevaluationsdelvecrucialunderstandingmanagingpresentmeasurementerrortreatmentdiscussimpactemphasizeimportancesystematicallyanalysinggoaldemonstrateeffectivelyaddressingdecodingsignificantlyenhanceaccuracyrobustnessdecisionsultimatelyleadingbetterpatientinformedpracticesThisarticlepartthemeissue'UncertaintybiologicalsystemsPart1'Decodinganalysisevidence-basedinnovation

Similar Articles

Cited By (1)