Control of medical digital twins with artificial neural networks.

Lucas B��ttcher, Luis L Fonseca, Reinhard C Laubenbacher
Author Information
  1. Lucas B��ttcher: Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, Frankfurt am Main 60322, Germany. ORCID
  2. Luis L Fonseca: Department of Medicine, Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA. ORCID
  3. Reinhard C Laubenbacher: Department of Medicine, Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA. ORCID

Abstract

The objective of precision medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations. Instead, they are often multi-scale, stochastic and hybrid. This poses a challenge to existing control and optimization approaches that cannot be readily applied to such models. Recent advances in neural-network control methods hold promise in addressing complex control problems. However, the application of these approaches to biomedical systems is still in its early stages. This work employs dynamics-informed neural-network controllers as an alternative approach to control of medical digital twins. As a first use case, we focus on the control of agent-based models (ABMs), a versatile and increasingly common modelling platform in biomedicine. The effectiveness of the proposed neural-network control methods is illustrated and benchmarked against other methods with two widely used ABMs. To account for the inherent stochastic nature of the ABMs we aim to control, we quantify uncertainty in relevant model and control parameters.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

Keywords

References

  1. IEEE Trans Neural Netw. 1998;9(2):294-307 [PMID: 18252453]
  2. Nat Commun. 2022 Jan 17;13(1):333 [PMID: 35039488]
  3. mSphere. 2021 Dec 22;6(6):e0087521 [PMID: 34908459]
  4. PLoS Comput Biol. 2020 Dec 1;16(12):e1008462 [PMID: 33259472]
  5. BMC Syst Biol. 2016 Apr 21;10:34 [PMID: 27098278]
  6. Genome Med. 2019 Dec 31;12(1):4 [PMID: 31892363]
  7. PLoS Comput Biol. 2023 Jun 15;19(6):e1010823 [PMID: 37319311]
  8. PLoS One. 2018 Nov 9;13(11):e0207072 [PMID: 30412640]
  9. J Theor Biol. 2022 Apr 21;539:111042 [PMID: 35114195]
  10. Nat Rev Cardiol. 2021 Dec;18(12):803-804 [PMID: 34642446]
  11. Arch Bronconeumol. 2023 Nov;59(11):760-761 [PMID: 37532646]
  12. Science. 2021 Mar 12;371(6534):1105-1106 [PMID: 33707255]
  13. Annu Rev Stat Appl. 2019 Mar;6:263-286 [PMID: 31073534]
  14. J Theor Biol. 1969 Dec;25(3):365-9 [PMID: 5387046]
  15. J R Soc Interface. 2021 Mar;18(176):20200987 [PMID: 33726540]
  16. Nat Rev Microbiol. 2012 Jul 16;10(8):538-50 [PMID: 22796884]
  17. Sci Rep. 2022 Dec 1;12(1):20731 [PMID: 36456599]
  18. PLoS Comput Biol. 2020 May 29;16(5):e1007917 [PMID: 32469867]
  19. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33972437]
  20. Bull Math Biol. 2023 Dec 30;86(1):11 [PMID: 38159216]
  21. Nat Med. 2021 Dec;27(12):2065-2066 [PMID: 34824458]
  22. PLoS Comput Biol. 2017 May 22;13(5):e1005544 [PMID: 28531184]
  23. Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240228 [PMID: 40078154]
  24. J Theor Biol. 1970 Feb;26(2):215-26 [PMID: 5434343]
  25. Cell. 2020 Apr 2;181(1):92-101 [PMID: 32243801]
  26. PLoS Comput Biol. 2025 Jan 14;21(1):e1012138 [PMID: 39808665]
  27. J R Soc Interface. 2022 Apr;19(189):20210806 [PMID: 35414216]
  28. Trends Cell Biol. 2023 Apr;33(4):300-311 [PMID: 36404257]
  29. Methods Mol Biol. 2021;2321:231-257 [PMID: 34048021]
  30. Chaos. 2023 Apr 1;33(4): [PMID: 37097945]
  31. Bull Math Biol. 2017 Jan;79(1):63-87 [PMID: 27826879]
  32. Med Hypotheses. 2015 Apr;84(4):395-401 [PMID: 25670416]
  33. J Math Biol. 2023 Jun 12;87(1):6 [PMID: 37306747]
  34. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]
  35. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7486-91 [PMID: 24799689]

Grants

  1. /hessian.AI
  2. /NIH HHS
  3. /Defense Advanced Research Projects Agency
  4. /Army Research Office

MeSH Term

Neural Networks, Computer
Humans
Precision Medicine
Stochastic Processes
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0controlmedicaldigitaltwinsmodelsbiologyneural-networkmethodssystemsABMshumanstochasticapproachesartificialneuralnetworksobjectiveprecisionmedicinetailorinterventionsindividualpatient'suniquecharacteristicskeytechnologypurposeinvolvescomputationalcanpersonalizeddynamicallyupdatedincorporatepatient-specificdataCertainaspectsimmunesystemeasilycapturedphysics-baseddifferentialequationsInsteadoftenmulti-scalehybridposeschallengeexistingoptimizationreadilyappliedRecentadvancesholdpromiseaddressingcomplexproblemsHoweverapplicationbiomedicalstillearlystagesworkemploysdynamics-informedcontrollersalternativeapproachfirstusecasefocusagent-basedversatileincreasinglycommonmodellingplatformbiomedicineeffectivenessproposedillustratedbenchmarkedtwowidelyusedaccountinherentnatureaimquantifyuncertaintyrelevantmodelparametersThisarticlepartthemeissue'UncertaintyquantificationhealthcarebiologicalPart1'Control

Similar Articles

Cited By