Inhibition of PDE-4 and PDE-5 Differentially Modulates Isolated Porcine Urethral Contractility.

Eriq Burovski, Donna Sellers, Russ Chess-Williams, Iris Lim
Author Information
  1. Eriq Burovski: Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia.
  2. Donna Sellers: Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia.
  3. Russ Chess-Williams: Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia.
  4. Iris Lim: Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia. ilim@bond.edu.au. ORCID

Abstract

PURPOSE/OBJECTIVE: This study explores the role of phosphodiesterase (PDE) inhibitors (specifically PDE-4, PDE-5 and PDE-1) in modulating the contractility of the porcine urethral smooth muscle and mucosal layers.
METHODS: Using an organ bath setup, the effects of PDE inhibitors rolipram, roflumilast, sildenafil, tadalafil and vinpocetine (0.1 nM to 10 ��m) on isolated porcine urethral mucosa-intact smooth muscle, mucosa-denuded smooth muscle and mucosal layers were investigated.
RESULTS: Our results demonstrate that PDE-4 inhibitors (rolipram and roflumilast) significantly relaxed mucosa-intact urethral smooth muscle and reduced spontaneous contraction rates in the mucosal strips. Conversely, PDE-5 inhibitors (sildenafil and tadalafil) relaxed smooth muscle tissues denuded of mucosa but required exogenous source of nitric oxide (sodium nitroprusside) for effectiveness in relaxing the mucosa-intact tissues. PDE-1 inhibitor vinpocetine exhibited negligible effects.
CONCLUSION: The results from the study suggest a potential role of the cAMP pathway in modulating spontaneous contractions within the urethral mucosa, while the NO/cGMP pathway appears to be important in modulating urethral smooth muscle tonic contractions. These findings suggest differential roles of PDE isoenzymes in urethral tissues.

Keywords

References

  1. Abrams P, Andersson KE, Birder L, Brubaker L, Cardozo L, Chapple C, Cottenden A, Davila W, de Ridder D, Dmochowski R, Drake M, Dubeau C, Fry C, Hanno P, Hay Smith J, Herschron S, Hosker G, Kelleher C, Koelbl H, ��� Wyndaele JJ. Fourth international consultation on incontinence recommendations of the international scientific committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse, and fecal incontinence. Neurol Urodynam. 2010;29(1):213���40. https://doi.org/10.1002/nau.20870
  2. Abufaraj M, Xu T, Cao C, Siyam A, Isleem U, Massad A, Soria F, Sharit SF, Sutcliffe S, Yang L. Prevalence and trends in urinary incontinence among women in the United States, 2005���2018. Am J Obstet Gynecol. 2021;225(2):166.e1-2. https://doi.org/10.1016/j.ajog.2021.03.016 [DOI: 10.1016/j.ajog.2021.03.016]
  3. Shamliyan TA, Wyman JF, Ping R, Wilt TJ, Kane RL. Male urinary incontinence: prevalence, risk factors, and preventative interventions. Rev Urol. 2009;11(3):145���65. [PMID: 19918340]
  4. Sims L, Hay-Smith J, Dean S. Pelvic floor exercises and female stress urinary incontinence. Br J Gen Pract. 2022;72(717):185���7. https://doi.org/10.3399/bjgp22X719033 [DOI: 10.3399/bjgp22X719033]
  5. Biswas B, Bhattacharyya A, Dasgupta A, Karmakar A, Mallick N, Sembiah. Urinary incontinence, its risks factors, and quality of life: a study among women aged 50 years and above in a rural health facility of West Bengal. J Midlife Health. 2017;8(3):130���6. https://doi.org/10.4103/jmh.JMH_62_17 [DOI: 10.4103/jmh.JMH_62_17]
  6. Datar M, Pan L, McKinney JL, Goss TF, Pulliam SJ. Healthcare resource use and cost burden of urinary incontinence to United States payers. Neurourol Urodyn. 2022;41(7):1553���62. https://doi.org/10.1002/nau.24989 [DOI: 10.1002/nau.24989]
  7. Chong EC, Khan AA, Anger JT. The financial burden of stress urinary incontinence among women in the United States. Curr Urol Rep. 2011;12(5):358���62. https://doi.org/10.1007/s11934-011-0209-x [DOI: 10.1007/s11934-011-0209-x]
  8. Jeffery ST, Kocjancic E, Allen J, Roovers JPWR. Development of a minimal invasive surgicial procedures for stress urinary incontinence. Continence Reports. 2022;4:100019. https://doi.org/10.1016/j.contre.2022.100019 [DOI: 10.1016/j.contre.2022.100019]
  9. Kerr LA. Bulking agents in the treatments of stress urinary incontinence: history, outcomes, patient populations, and reimbursement profile. Rev Urol. 2005;7(Suppl 1):S3���11. [PMID: 16985874]
  10. Giembycz MA. Phosphodiesterae-4: selective and dual-specificity inhibitors for the therapy of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):326���33. https://doi.org/10.1513/pats.200504-041SR [DOI: 10.1513/pats.200504-041SR]
  11. Zebda R, Paller AS. Phosphodiesterase 4 inhibitors. J Am Acad Dermatol. 2018;78(3 Suppl 1):S43���52. https://doi.org/10.1016/j.jaad.2017.11.056 [DOI: 10.1016/j.jaad.2017.11.056]
  12. Andersson KE, Uckert S, Stief C, Hedlund P. Phosphodiesterases (PDEs) and PDE inhibitors for treatment of LUTS. Neurourol Urodyn. 2007;26(6 Suppl):928���33. https://doi.org/10.1002/nau.20485 [DOI: 10.1002/nau.20485]
  13. Rahardjo HE, Uckert S, Bannowsky A, Kuczyk MA, Kedia GT. Expression of phosphodiesterase (PDE) isoenzymes in the human male and female urethra. Res Rep Urol. 2021;13:139���45. https://doi.org/10.2147/RRU.S291962 [DOI: 10.2147/RRU.S291962]
  14. Izumi H, Kaiho Y, Miyazato M, Kawamorita N, Nakagawa H, Arai Y. Effects of phosphodiesterase type 5 inhibitor, tadalafil, on continence reflex in rats. Int Urogynecol Assoc. 2014;25:1721���7. https://doi.org/10.1007/s00192-014-2453-3.pdf [DOI: 10.1007/s00192-014-2453-3.pdf]
  15. Kedia GT, Oelke M, Sonnenberg JE, Sohn M, Bannowsky A, Kuczyk MA, Uckert S. Phosphodiesterase isoenzymes in the human urethra: a molecular biology and functional study. Eur J Pharmacol. 2014;741:330���5. https://doi.org/10.1016/j.ejphar.2014.08.005 [DOI: 10.1016/j.ejphar.2014.08.005]
  16. Lee JG, Moon DG, Kang SH, Cho DY, Park HS, Bae JH. Relaxation effect of phosphodiesterase-5 inhibitor on the animal bladder and prostatic urethra: in vitro and in vivo study. Urol Int. 2010;84:231���5. https://doi.org/10.1159/000277604 [DOI: 10.1159/000277604]
  17. Lin G, Huang Y, Wang G, Lue TF, Lin C. Prominent expression of phosphodiesterase 5 in the straited muscle of rat urethra and levator ani. J Urol. 2010;184(2):769���74. https://doi.org/10.1016/j.juro.2010.03.110 [DOI: 10.1016/j.juro.2010.03.110]
  18. Werkstrom V, Svensson A, Andersson K-E, Hedlund P. Phosphodiesterase 5 in the female pig and human urethra: morphological and functional aspect. BJU Int. 2006;98(2):414���23. https://doi.org/10.1111/j.1464-410X.2006.06217.x [DOI: 10.1111/j.1464-410X.2006.06217.x]
  19. Alexandre EC, Kiguti LR, Calmasini FB, Silva FH, da Silva KP, Ferreira R, Ribeiro CA, M��nica FZ, Pupo AS, Antunes E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving ��3 -adrenoceptor activation and ��1 -adrenoceptor blockade. Br J Pharmacol. 2016;173(3):415���28. https://doi.org/10.1111/bph.13367 [DOI: 10.1111/bph.13367]
  20. Mistry MA, Klarskov N, DeLancey JO, Lose G. A structured review on the female urethral anatomy and innervation with an emphasis on the role of the urethral longitudinal smooth muscle. Int Urogynecol J. 2020;31(1):63���71. https://doi.org/10.1007/s00192-019-04104-7 [DOI: 10.1007/s00192-019-04104-7]
  21. Bertollotto GM, de Oliveira MG, Alexandre EC, Calmasini FB, Passos GR, Antunes E, M��nica FZ. Inhibition of multidrug resistance proteins by MK 571 enhances bladder, prostate, and urethra relaxation through cAMP or cGMP accumulation. J Pharmacol Exp Ther. 2018;367(1):138���46. https://doi.org/10.1124/jpet.118.250076 [DOI: 10.1124/jpet.118.250076]
  22. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Interstitial cells of Cajal in the urethra. J Cell Mol Med. 2006;10(2):280���91. https://doi.org/10.1111/j.1582-4934.2006.tb00399.x [DOI: 10.1111/j.1582-4934.2006.tb00399.x]
  23. Weber S, Zeller M, Guan K, Wunder F, Wagner M, El-Armouche A. PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal. 2017;38:76���84. https://doi.org/10.1016/j.cellsig.2017.06.020 [DOI: 10.1016/j.cellsig.2017.06.020]
  24. Zaccolo M, Movsesian MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res. 2007;100(11):1569���78. https://doi.org/10.1161/CIRCRESAHA.106.144501 [DOI: 10.1161/CIRCRESAHA.106.144501]

Word Cloud

Created with Highcharts 10.0.0smoothmuscleurethralinhibitorsPDEpathwayPDE-4PDE-5modulatingmucosalmucosa-intacttissuesUrethralstudyrolePDE-1contractilityporcinelayerseffectsrolipramroflumilastsildenafiltadalafilvinpocetineresultsrelaxedspontaneousmucosasuggestcAMPcontractionsNO/cGMPPURPOSE/OBJECTIVE:exploresphosphodiesterasespecificallyMETHODS:Usingorganbathsetup01 nM10 ��misolatedmucosa-denudedinvestigatedRESULTS:demonstratesignificantlyreducedcontractionratesstripsConverselydenudedrequiredexogenoussourcenitricoxidesodiumnitroprussideeffectivenessrelaxinginhibitorexhibitednegligibleCONCLUSION:potentialwithinappearsimportanttonicfindingsdifferentialrolesisoenzymesInhibitionDifferentiallyModulatesIsolatedPorcineContractilityStressurinaryincontinence

Similar Articles

Cited By