Evaluating fatty acid profiles in anisakid nematode parasites and adjacent tissue of European hake (Merluccius merluccius): a first insight into local host-parasite lipid dynamics.

Jo��o P Monteiro, Tiago Sousa, Marisa Pinho, Fernando Atroch, Lu��s Filipe Rangel, Camilo Ayra Pardo, Maria Jo��o Santos, Rita Barracosa, Felisa Rey, M Ros��rio Domingues, Ricardo Calado
Author Information
  1. Jo��o P Monteiro: CESAM & Departamento de Qu��mica, Universidade de Aveiro, Campus Universit��rio de Santiago, 3810-193, Aveiro, Portugal. jpspmonteiro@yahoo.com.
  2. Tiago Sousa: CESAM & Departamento de Qu��mica, Universidade de Aveiro, Campus Universit��rio de Santiago, 3810-193, Aveiro, Portugal.
  3. Marisa Pinho: CESAM & Departamento de Qu��mica, Universidade de Aveiro, Campus Universit��rio de Santiago, 3810-193, Aveiro, Portugal.
  4. Fernando Atroch: Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and CIIMAR, Departmento de Biologia, Faculdade de Ci��ncias, Universidade do Porto, Rua do Campo Alegre s/n, FC4, 4169-007, Porto, Portugal.
  5. Lu��s Filipe Rangel: CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leix��es, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
  6. Camilo Ayra Pardo: CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leix��es, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
  7. Maria Jo��o Santos: Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and CIIMAR, Departmento de Biologia, Faculdade de Ci��ncias, Universidade do Porto, Rua do Campo Alegre s/n, FC4, 4169-007, Porto, Portugal.
  8. Rita Barracosa: MC Shared Services S.A. - Rua Jo��o Mendon��a, 529, 4464-501 Senhora da Hora, Matosinhos, Portugal.
  9. Felisa Rey: CESAM & Departamento de Qu��mica, Universidade de Aveiro, Campus Universit��rio de Santiago, 3810-193, Aveiro, Portugal.
  10. M Ros��rio Domingues: CESAM & Departamento de Qu��mica, Universidade de Aveiro, Campus Universit��rio de Santiago, 3810-193, Aveiro, Portugal. mrd@ua.pt.
  11. Ricardo Calado: ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universit��rio de Santiago, 3810-193, Aveiro, Portugal. rjcalado@ua.pt.

Abstract

Parasitism in fish is a widespread and ecologically significant phenomenon, affecting fish in both wild and aquaculture environments. Comprehending parasitism is essential for managing fish populations, protecting fish health, and preventing human exposure to zoonotic parasites. Understanding lipid dynamics between parasitic organisms and their hosts is crucial for elucidating host-parasite interactions. Although the third larval (L3) stage of anisakid larvae is not a developing stage, and therefore not as dependent on the host for the acquisition of nutrients, there are hints of interplay between parasites and fish hosts, also in terms of lipid content. This study aimed to characterize for the first time the fatty acid profiles of anisakid nematode parasites and adjacent tissue in the European hake (Merluccius merluccius) in order to shed some light on these intricate relationships. Fatty acid analysis revealed significant differences in the percentages of individual fatty acids between anisakid nematodes and adjacent European hake tissue. Anisakids presented a higher content in stearic (18:0), vaccenic (18:1n-7), and linoleic (18:2n-6) acids, while in turn, the belly flap tissue of the fish presented significantly higher contents in palmitic (16:0) and especially docosahexaenoic acid (22:6n-3) than the parasite. These differences suggest unique lipid metabolic pathways between parasite and fish, and that parasitism and the possible acquisition of lipids from the host (hake) do not profoundly shape the fatty acid profile of the parasites. Furthermore, the distinct fatty acid signatures described for parasites and hosts may serve as baselines to follow possible changes in the ecological statuses of both species and even to appraise the nutritional features of European hake when affected by parasitism. This study provides valuable insights into the lipid dynamics within host-parasite systems and underscores the importance of further research to unravel the complexities of these interactions.

Keywords

References

  1. Microorganisms. 2022 Feb 01;10(2): [PMID: 35208786]
  2. Adv Parasitol. 1991;30:201-38 [PMID: 2069073]
  3. Integr Comp Biol. 2016 Oct;56(4):611-9 [PMID: 27252206]
  4. J Parasit Dis. 2010 Apr;34(1):52-6 [PMID: 21526035]
  5. Ecol Evol. 2014 Aug;4(15):3093-102 [PMID: 25247066]
  6. Clin Microbiol Rev. 2008 Apr;21(2):360-79, table of contents [PMID: 18400801]
  7. Vet Parasitol. 2014 Oct 15;205(3-4):581-7 [PMID: 25224792]
  8. Dis Aquat Organ. 2008 Oct 16;82(1):61-5 [PMID: 19062754]
  9. Animals (Basel). 2023 Jan 04;13(2): [PMID: 36670737]
  10. Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719): [PMID: 28289256]
  11. Parasitology. 2015 Jan;142(1):145-55 [PMID: 24156370]
  12. Trends Parasitol. 2004 Apr;20(4):170-7 [PMID: 15099556]
  13. Mol Biochem Parasitol. 2017 Sep;216:39-44 [PMID: 28651962]
  14. Exp Parasitol. 2010 Mar;124(3):334-40 [PMID: 19945456]
  15. Can J Biochem. 1974 Jun;52(6):483-90 [PMID: 4844283]
  16. Food Waterborne Parasitol. 2021 Dec 03;26:e00138 [PMID: 34977391]
  17. Parasitology. 2022 Dec;149(14):1985-1997 [PMID: 35950444]
  18. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  19. Fish Shellfish Immunol. 2013 Sep;35(3):734-9 [PMID: 23769875]
  20. Animals (Basel). 2022 Sep 30;12(19): [PMID: 36230375]
  21. Vet Parasitol. 2010 Aug 4;171(3-4):247-53 [PMID: 20413223]
  22. J Evol Biol. 2008 Mar;21(2):396-404 [PMID: 18179516]
  23. Int J Parasitol Parasites Wildl. 2019 Jun 06;9:384-393 [PMID: 31338296]
  24. Glob Chang Biol. 2020 May;26(5):2854-2866 [PMID: 32189441]
  25. Obstet Gynecol Surv. 2016 Apr;71(4):253-9 [PMID: 27065071]
  26. J Parasitol Res. 2016;2016:9609752 [PMID: 26925257]
  27. Metabolites. 2020 Nov 06;10(11): [PMID: 33171998]
  28. EFSA J. 2024 Apr 22;22(4):e8719 [PMID: 38650612]
  29. Sci Total Environ. 2022 Nov 15;847:157354 [PMID: 35850338]
  30. J Parasitol Res. 2012;2012:237280 [PMID: 22900144]
  31. Adv Parasitol. 2008;66:47-148 [PMID: 18486689]
  32. Parasitol Res. 2008 Feb;102(3):371-9 [PMID: 18026753]
  33. Parasitol Res. 1996;82(4):319-22 [PMID: 8740547]
  34. Rev Sci Tech. 2008 Aug;27(2):467-84 [PMID: 18819673]
  35. Int J Food Microbiol. 2015 Apr 2;198:1-8 [PMID: 25584776]
  36. Int J Parasitol Parasites Wildl. 2020 May 25;12:300-307 [PMID: 33101907]
  37. Biology (Basel). 2024 Jan 11;13(1): [PMID: 38248472]
  38. Int J Parasitol Parasites Wildl. 2024 Apr 17;24:100937 [PMID: 38655447]
  39. Sci Rep. 2017 Mar 13;7:43699 [PMID: 28287609]
  40. Ecol Lett. 2008 Jun;11(6):533-46 [PMID: 18462196]
  41. Food Waterborne Parasitol. 2020 Dec 24;22:e00108 [PMID: 33681486]
  42. Front Immunol. 2018 May 23;9:1022 [PMID: 29875768]
  43. Parasitology. 1982 Feb;84(1):177-94 [PMID: 6801607]
  44. Parasit Vectors. 2019 Jul 30;12(1):381 [PMID: 31362767]
  45. EFSA J. 2022 May 25;20(Suppl 1):e200409 [PMID: 35634563]
  46. Anal Biochem. 1970 Jul;36(1):159-67 [PMID: 5482622]
  47. Int J Food Microbiol. 2021 Apr 2;343:109094 [PMID: 33621832]
  48. Vet Parasitol. 2007 Aug 19;148(1):43-57 [PMID: 17597303]
  49. Emerg Infect Dis. 2013 Mar;19(3):496-9 [PMID: 23621984]
  50. Mol Biochem Parasitol. 1996 Jun;78(1-2):105-16 [PMID: 8813681]
  51. Ecol Evol. 2018 Aug 05;8(17):8713-8725 [PMID: 30271539]
  52. Parasitol Res. 2023 Dec;122(12):3053-3062 [PMID: 37806979]
  53. Eur J Epidemiol. 1997 Jun;13(4):451-63 [PMID: 9258553]
  54. Parasitol Res. 2014 Mar;113(3):1113-8 [PMID: 24458651]
  55. Foods. 2020 Apr 07;9(4): [PMID: 32272621]
  56. Parasitol Res. 2021 Jun;120(6):1979-1991 [PMID: 33987737]
  57. Parasitol Res. 1998;84(4):281-5 [PMID: 9569092]
  58. Am Nat. 2008 Jan;171(1):107-18 [PMID: 18171155]
  59. Trends Parasitol. 2023 Jun;39(6):461-474 [PMID: 37061443]
  60. Pathogens. 2022 May 26;11(6): [PMID: 35745476]
  61. Dis Aquat Organ. 2009 Dec 3;87(3):199-215 [PMID: 20099413]
  62. Rev Sci Tech. 1997 Aug;16(2):652-60 [PMID: 9501379]
  63. J Lipid Res. 1998 Oct;39(10):1989-94 [PMID: 9788245]
  64. Comp Biochem Physiol B Biochem Mol Biol. 2010 Jun;156(2):107-14 [PMID: 20206710]
  65. Parasitol Res. 1995;81(6):522-6 [PMID: 7567912]
  66. Parasitology. 2022 Dec;149(14):1942-1957 [PMID: 36321524]
  67. Pathogens. 2021 Sep 16;10(9): [PMID: 34578236]

Grants

  1. Project N��. C644915664-00000026/BLUE BIOECONOMY PACT
  2. Project N��. C644915664-00000026/BLUE BIOECONOMY PACT

MeSH Term

Animals
Fatty Acids
Gadiformes
Host-Parasite Interactions
Fish Diseases
Anisakis
Larva
Lipid Metabolism
Anisakiasis

Chemicals

Fatty Acids

Word Cloud

Created with Highcharts 10.0.0fishparasitesacidlipidfattyhakeparasitismanisakidtissueEuropeandynamicshostshost-parasitenematodeadjacentacidssignificantinteractionsstagehostacquisitioncontentstudyfirstprofilesMerlucciusmerlucciusFattydifferencespresentedhigherparasitepossibleParasitismwidespreadecologicallyphenomenonaffectingwildaquacultureenvironmentsComprehendingessentialmanagingpopulationsprotectinghealthpreventinghumanexposurezoonoticUnderstandingparasiticorganismscrucialelucidatingAlthoughthirdlarvalL3larvaedevelopingthereforedependentnutrientshintsinterplayalsotermsaimedcharacterizetimeordershedlightintricaterelationshipsanalysisrevealedpercentagesindividualnematodesAnisakidsstearic18:0vaccenic18:1n-7linoleic18:2n-6turnbellyflapsignificantlycontentspalmitic16:0especiallydocosahexaenoic22:6n-3suggestuniquemetabolicpathwayslipidsprofoundlyshapeprofileFurthermoredistinctsignaturesdescribedmayservebaselinesfollowchangesecologicalstatusesspeciesevenappraisenutritionalfeaturesaffectedprovidesvaluableinsightswithinsystemsunderscoresimportanceresearchunravelcomplexitiesEvaluating:insightlocalAnisakidFishFoodsafetyLipidsNutritionalquality

Similar Articles

Cited By

No available data.