A Mathematical Exploration of SDH-b Loss in Chromaffin Cells.

El��as Vera-Sig��enza, Himani Rana, Ramin Nashebi, Ielyaas Cloete, Katar��na Kl'uv��kov��, Fabian Spill, Daniel A Tennant
Author Information
  1. El��as Vera-Sig��enza: Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. e.siguenza@proton.me. ORCID
  2. Himani Rana: Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
  3. Ramin Nashebi: School of Mathematics, University of Birmingham, Birmingham, UK.
  4. Ielyaas Cloete: Centre de Recerca Matem��tica, Edifici C. Campus de Bellaterra, Cerdanyola del Vall��s, 08193, Barcelona, Spain.
  5. Katar��na Kl'uv��kov��: Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
  6. Fabian Spill: School of Mathematics, University of Birmingham, Birmingham, UK.
  7. Daniel A Tennant: Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Abstract

The succinate dehydrogenase (SDH) is a four-subunit enzyme complex (SDH-a, SDH-b, SDH-c, and SDH-d) central to cell carbon metabolism. The SDH bridges the tricarboxylic acid cycle to the electron transport chain. A pathological loss of the SDH-b subunit leads to a cell-wide signalling cascade that shifts the cell's metabolism into a pseudo-hypoxic state akin to the so-called Warburg effect (or aerobic glycolysis). This trait is a hallmark of phaeochromocytomas, a rare tumour arising from chromaffin cells; a type of cell that lies in the medulla of the adrenal gland. In this study, we leverage the insights from a mathematical model constructed to underpin the metabolic implications of SDH-b dysfunction in phaeochromocytomas. We specifically investigate why chromaffin cells seemingly have the ability to maintain electron transport chain's Complex I function when confronted with the loss of the SDH-b subunit while other cells do not. Our simulations indicate that retention of Complex I is associated with cofactor oxidation, which enables cells to manage mitochondrial swelling and limit the reversal of the adenosine triphosphate synthase, supporting cell fitness, without undergoing lysis. These results support previous hypotheses that point to mitochondrial proton leaks as a critical factor of future research. Moreover, the model asserts that control of the proton gradient across the mitochondrial inner membrane is rate-limiting upon fitness management of SDH-b deficient cells.

Keywords

References

  1. Exp Physiol. 2004 Jan;89(1):1-26 [PMID: 15109205]
  2. J Biol Chem. 2020 Nov 6;295(45):15262-15279 [PMID: 32859750]
  3. Cell Mol Life Sci. 2005 Oct;62(19-20):2317-24 [PMID: 16143825]
  4. Cancers (Basel). 2021 Mar 24;13(7): [PMID: 33804985]
  5. J Biol Chem. 1990 Jan 5;265(1):348-53 [PMID: 2136738]
  6. Endocr Relat Cancer. 2013 May 21;20(3):349-59 [PMID: 23533246]
  7. Endocr Relat Cancer. 2015 Jun;22(3):387-97 [PMID: 25972245]
  8. Ann Biomed Eng. 2002 Feb;30(2):202-16 [PMID: 11962772]
  9. Exp Mol Med. 2018 Apr 16;50(4):1-13 [PMID: 29657327]
  10. J Oral Maxillofac Pathol. 2019 Sep-Dec;23(3):443-449 [PMID: 31942129]
  11. Nat Cell Biol. 2015 Oct;17(10):1317-26 [PMID: 26302408]
  12. Am J Physiol. 1997 Sep;273(3 Pt 2):F473-82 [PMID: 9321922]
  13. Wiley Interdiscip Rev Syst Biol Med. 2016 Jul;8(4):272-85 [PMID: 27196610]
  14. Cell Tissue Res. 2018 May;372(2):367-378 [PMID: 29450727]
  15. J Neurophysiol. 2003 Dec;90(6):3828-37 [PMID: 12968012]
  16. J Biochem. 1998 Jan;123(1):128-35 [PMID: 9504419]
  17. Science. 2000 Feb 4;287(5454):848-51 [PMID: 10657297]
  18. J Biol Chem. 1979 May 25;254(10):3750-60 [PMID: 438157]
  19. J Neurochem. 2002 Mar;80(5):780-7 [PMID: 11948241]
  20. Cancer Cell. 2005 Jan;7(1):77-85 [PMID: 15652751]
  21. Biophys Chem. 2001 Aug 30;92(1-2):17-34 [PMID: 11527576]
  22. J Membr Biol. 2012 Jan;245(1):29-50 [PMID: 22258315]
  23. Comput Biol Med. 2019 Feb;105:64-71 [PMID: 30584952]
  24. EMBO J. 2023 May 15;42(10):e111699 [PMID: 36912136]
  25. Bull Math Biol. 2020 Mar 11;82(3):38 [PMID: 32162119]
  26. Mitochondrion. 2010 Jun;10(4):393-401 [PMID: 20226277]
  27. J Intern Med. 2009 Jul;266(1):19-42 [PMID: 19522823]
  28. J Gen Physiol. 2019 Apr 1;151(4):407-416 [PMID: 30782603]
  29. Cancer Res. 2003 Sep 1;63(17):5615-21 [PMID: 14500403]
  30. Metabolites. 2016 Nov 11;6(4): [PMID: 27845718]
  31. Nat Rev Cancer. 2014 Feb;14(2):108-19 [PMID: 24442145]
  32. BMC Syst Biol. 2019 Jan 9;13(1):2 [PMID: 30626386]
  33. Biophys J. 2010 Apr 21;98(8):1476-85 [PMID: 20409466]
  34. Nat Rev Endocrinol. 2021 Jul;17(7):435-444 [PMID: 34021277]
  35. Biochem J. 2001 Aug 15;358(Pt 1):225-32 [PMID: 11485571]
  36. Metab Eng. 2022 Jan;69:275-285 [PMID: 34965470]
  37. PLoS Comput Biol. 2023 Sep 15;19(9):e1011374 [PMID: 37713666]
  38. Bioinformatics. 2014 May 1;30(9):1333-5 [PMID: 24413674]
  39. Exp Biol Med (Maywood). 2023 Feb;248(3):263-270 [PMID: 36691338]
  40. Alcohol Res Health. 2008;31(1):49-59 [PMID: 23584751]
  41. Endocr Relat Cancer. 2015 Jun;22(3):345-52 [PMID: 25808178]
  42. J Biol Chem. 1980 Dec 10;255(23):11273-9 [PMID: 7440541]
  43. Bull Math Biol. 2022 Jul 7;84(8):84 [PMID: 35799078]
  44. EMBO J. 2023 May 15;42(10):e114141 [PMID: 37021792]
  45. Cancer Cell. 2013 Jun 10;23(6):739-52 [PMID: 23707781]
  46. Elife. 2023 Mar 08;12: [PMID: 36883551]
  47. J Theor Biol. 2007 Sep 7;248(1):64-80 [PMID: 17559884]
  48. Cancer Lett. 2021 Apr 1;502:133-142 [PMID: 33444690]
  49. Curr Med Chem. 2003 Aug;10(16):1507-25 [PMID: 12871123]
  50. J Cell Physiol. 2013 Apr;228(4):743-52 [PMID: 22949268]
  51. Trends Biochem Sci. 2020 Mar;45(3):244-258 [PMID: 31787485]
  52. Biophys Chem. 2000 Jan 10;83(1):19-34 [PMID: 10631477]
  53. Bull Math Biol. 2018 Feb;80(2):255-282 [PMID: 29209914]
  54. J Physiol. 2011 Mar 1;589(Pt 5):1053-60 [PMID: 21135044]
  55. Am J Physiol. 1989 Jan;256(1 Pt 2):H265-74 [PMID: 2912189]
  56. Curr Opin Plant Biol. 2013 Jun;16(3):344-9 [PMID: 23453781]
  57. Crit Care Med. 1993 Sep;21(9 Suppl):S340-1 [PMID: 8395993]
  58. Cancer Genet. 2012 Jan-Feb;205(1-2):1-11 [PMID: 22429592]
  59. J Theor Biol. 2010 Oct 21;266(4):625-40 [PMID: 20600135]
  60. Nat Commun. 2015 Nov 02;6:8784 [PMID: 26522426]
  61. FASEB J. 2020 Jan;34(1):303-315 [PMID: 31914648]
  62. Biomol Eng. 2002 Jun;19(1):5-15 [PMID: 12103361]
  63. Biochim Biophys Acta. 2016 Oct;1863(10):2436-42 [PMID: 26826034]
  64. Am J Physiol Cell Physiol. 2011 Mar;300(3):C385-93 [PMID: 21123733]
  65. Postepy Hig Med Dosw (Online). 2012 Jan 04;66:165-74 [PMID: 22470192]
  66. Biochem Biophys Res Commun. 2015 Aug 21;464(2):369-75 [PMID: 26091567]
  67. Metab Eng. 2017 Sep;43(Pt B):187-197 [PMID: 27847310]
  68. J Math Biol. 2012 Nov;65(5):875-918 [PMID: 22042535]
  69. Cell Mol Life Sci. 2019 Oct;76(20):4023-4042 [PMID: 31236625]
  70. Nature. 2020 Jun;582(7810):137-138 [PMID: 32385367]
  71. Bull Math Biol. 2019 Mar;81(3):699-721 [PMID: 30484039]
  72. Cancer Res. 2021 Jul 1;81(13):3480-3494 [PMID: 34127497]
  73. PLoS Comput Biol. 2005 Sep;1(4):e36 [PMID: 16163394]
  74. Am J Physiol Gastrointest Liver Physiol. 2024 May 1;326(5):G555-G566 [PMID: 38349781]
  75. Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2400-11 [PMID: 15681693]

Grants

  1. C42109/A24747/Cancer Research UK
  2. MR/T043571/1/UK Research and Innovation

MeSH Term

Chromaffin Cells
Mathematical Concepts
Models, Biological
Humans
Adrenal Gland Neoplasms
Computer Simulation
Pheochromocytoma
Succinate Dehydrogenase
Mitochondria
Electron Transport Complex I
Animals

Chemicals

Succinate Dehydrogenase
SDHB protein, human
Electron Transport Complex I

Word Cloud

Created with Highcharts 10.0.0SDH-bcellscellmetabolismtransportmitochondrialdehydrogenaseSDHcycleelectronchainlosssubunitphaeochromocytomaschromaffinmodelComplexfitnessprotonChromaffinsuccinatefour-subunitenzymecomplexSDH-aSDH-cSDH-dcentralcarbonbridgestricarboxylicacidpathologicalleadscell-widesignallingcascadeshiftscell'spseudo-hypoxicstateakinso-calledWarburgeffectaerobicglycolysistraithallmarkraretumourarisingtypeliesmedullaadrenalglandstudyleverageinsightsmathematicalconstructedunderpinmetabolicimplicationsdysfunctionspecificallyinvestigateseeminglyabilitymaintainchain'sfunctionconfrontedsimulationsindicateretentionassociatedcofactoroxidationenablesmanageswellinglimitreversaladenosinetriphosphatesynthasesupportingwithoutundergoinglysisresultssupportprevioushypothesespointleakscriticalfactorfutureresearchMoreoverassertscontrolgradientacrossinnermembranerate-limitinguponmanagementdeficientMathematicalExplorationLossCellsAdrenalglandsDynamicalsystemsElectronPhaeochromocytomaSuccinateSystemsTCA

Similar Articles

Cited By

No available data.