Introducing artificial intelligence and sperm epigenetics in the fertility clinic: a novel foundation for diagnostics and prediction modelling.

Adelheid Soubry
Author Information
  1. Adelheid Soubry: Epigenetic Epidemiology Lab, Department of Human Genetics, Faculty of Medicine, KU Leuven-University of Leuven, Leuven, Belgium.

Abstract

Worldwide, infertility is a rising problem. A couple's lifestyle, age and environmental exposures can interfere with reproductive health. The scientific field tries to understand the various processes how male and female factors may affect fertility, but translation to the clinic is limited. I here emphasize potential reasons for failure in optimal treatment planning and especially why current prediction modelling falls short. First, Assisted Reproductive Technology (ART) has become a mainstream solution for couples experiencing infertility, while potential causes of infertility remain unexplored or undetermined. For instance, the role of men is generally left out of preconceptional testing and care. Second, regularly used statistical or computational methods to estimate pregnancy outcomes miss important biological and environmental factors, including features from the male side (e.g., age, smoking, obesity status, alcohol use and occupation), as well as genetic and epigenetic characteristics. I suggest using an integrated approach of biostatistics and machine learning methods to improve diagnostics and prediction modelling in the fertility clinic. The novelty of this concept includes the use of empirically collected information on the sperm epigenome combined with readily available data from medical records from both partners and lifestyle factors. As the reproductive field needs well-designed models at different levels, derivatives are needed. The objectives of patients, clinicians, and embryologists differ slightly, and mathematical models need to be adapted accordingly. A multidisciplinary approach where patients are seen by both, clinicians and biomedically skilled counsellors, could help provide evidence-based assistance to improve pregnancy success. Next, when it concerns factors that may change the ability to produce optimal embryos in ART, the embryologist would benefit from a personalized prediction model, including medical history of the patient as well as genetic and epigenetic data from easily accessible germ cells, such as sperm.

Keywords

References

  1. Clin Epigenetics. 2022 Apr 27;14(1):54 [PMID: 35477426]
  2. Environ Toxicol. 2007 Jun;22(3):245-55 [PMID: 17497641]
  3. Fertil Steril. 2016 Jan;105(1):51-7.e1-3 [PMID: 26453269]
  4. Sci Rep. 2021 Feb 5;11(1):3216 [PMID: 33547328]
  5. Br J Obstet Gynaecol. 1999 Feb;106(2):165-70 [PMID: 10426683]
  6. Science. 2005 Jun 3;308(5727):1466-9 [PMID: 15933200]
  7. F S Sci. 2023 Nov;4(4):279-285 [PMID: 37714409]
  8. Hum Reprod Update. 2013 May-Jun;19(3):221-31 [PMID: 23242914]
  9. Biol Reprod. 2008 Apr;78(4):618-35 [PMID: 18003951]
  10. Hum Reprod Update. 2017 Nov 1;23(6):660-680 [PMID: 28981651]
  11. Environ Sci Technol Lett. 2017 Mar 14;4(3):112-118 [PMID: 28317001]
  12. Am J Obstet Gynecol. 2013 Dec;209(6):586.e1-586.e11 [PMID: 24238479]
  13. Fertil Steril. 2013 May;99(6):1558-9 [PMID: 23461824]
  14. Fertil Steril. 2013 Jul;100(1):262-8.e1-2 [PMID: 23579004]
  15. Fertil Steril. 2006 May;85(5):1420-4 [PMID: 16616749]
  16. Front Endocrinol (Lausanne). 2021 Aug 23;12:717288 [PMID: 34497586]
  17. J Assist Reprod Genet. 2021 Aug;38(8):2041-2048 [PMID: 33786731]
  18. Hum Reprod. 2009 Dec;24(12):3127-35 [PMID: 19783833]
  19. Aging Cell. 2020 Aug;19(8):e13178 [PMID: 32610362]
  20. Lancet Diabetes Endocrinol. 2017 Jul;5(7):544-553 [PMID: 27395771]
  21. Int J Androl. 2010 Aug 1;33(4):642-9 [PMID: 19878521]
  22. Aging (Albany NY). 2023 Feb 27;15(5):1257-1278 [PMID: 36849136]
  23. Healthcare (Basel). 2021 Mar 11;9(3): [PMID: 33799725]
  24. Hum Reprod Update. 2024 Mar 1;30(2):153-173 [PMID: 38197291]
  25. Reprod Biomed Online. 2022 Jan;44(1):131-144 [PMID: 34848151]
  26. Syst Biol Reprod Med. 2018 Oct;64(5):305-323 [PMID: 30088950]
  27. Comput Struct Biotechnol J. 2022 Oct 23;20:5761-5774 [PMID: 36756173]
  28. Int J Gen Med. 2020 Feb 05;13:29-41 [PMID: 32104049]
  29. BMC Genomics. 2018 Oct 22;19(1):763 [PMID: 30348084]
  30. BMJ Open. 2020 Oct 8;10(10):e037289 [PMID: 33033089]
  31. Best Pract Res Clin Obstet Gynaecol. 2023 Jul;89:102349 [PMID: 37327667]
  32. Urol Ann. 2020 Oct-Dec;12(4):314-318 [PMID: 33776325]
  33. Andrologia. 2021 Mar;53(2):e13874 [PMID: 33108829]
  34. JAMA Netw Open. 2024 Apr 1;7(4):e249640 [PMID: 38607631]
  35. Aging Cell. 2020 Oct;19(10):e13242 [PMID: 32951333]
  36. Fertil Steril. 2010 Jul;94(2):585-94 [PMID: 19338988]
  37. Transl Androl Urol. 2018 Jul;7(Suppl 3):S303-S309 [PMID: 30159236]
  38. Cell Metab. 2016 Feb 9;23(2):369-78 [PMID: 26669700]
  39. Andrology. 2017 Nov;5(6):1089-1099 [PMID: 28950428]
  40. Hum Reprod. 2021 Jan 1;36(1):107-115 [PMID: 33164068]
  41. Reprod Biomed Online. 2014 May;28(5):572-81 [PMID: 24631167]
  42. J Assist Reprod Genet. 2019 Jul;36(7):1441-1448 [PMID: 31218565]
  43. BMC Pregnancy Childbirth. 2022 Jan 16;22(1):36 [PMID: 35034623]
  44. Elife. 2022 Dec 13;11: [PMID: 36511240]
  45. NPJ Digit Med. 2019 Nov 25;2:115 [PMID: 31799423]
  46. Syst Biol Reprod Med. 2017 Apr;63(2):69-76 [PMID: 28301256]
  47. Environ Epigenet. 2017 Apr 14;3(1):dvx003 [PMID: 29492305]
  48. Curr Opin Toxicol. 2018 Feb;7:52-59 [PMID: 29392186]
  49. Commun Biol. 2023 Nov 16;6(1):1138 [PMID: 37973839]
  50. Reprod Biol Endocrinol. 2015 Apr 26;13:37 [PMID: 25928197]
  51. Gynecol Endocrinol. 2006 Jan;22(1):25-30 [PMID: 16522530]
  52. Fertil Steril. 2013 Oct;100(4):927-8 [PMID: 23796366]
  53. Nat Rev Endocrinol. 2017 Mar;13(3):161-173 [PMID: 27857130]
  54. Clin Epigenetics. 2020 Apr 3;12(1):51 [PMID: 32245523]
  55. Reprod Toxicol. 2011 Apr;31(3):337-43 [PMID: 21055462]
  56. Fertil Steril. 2009 Jun;91(6):2281-94 [PMID: 19481642]
  57. Int J Epidemiol. 2018 Aug 1;47(4):1106-1117 [PMID: 29534228]
  58. Reprod Toxicol. 2012 Dec;34(4):694-707 [PMID: 23041264]
  59. Fertil Steril. 2020 Apr;113(4):781-787.e1 [PMID: 32228880]
  60. Clin Epigenetics. 2021 Jan 25;13(1):17 [PMID: 33494820]
  61. Asian Pac J Cancer Prev. 2015;16(16):6967-72 [PMID: 26514476]
  62. Sci Rep. 2020 Dec 1;10(1):20925 [PMID: 33262383]
  63. Lancet. 1978 Aug 12;2(8085):366 [PMID: 79723]
  64. Fertil Steril. 2003 Jun;79 Suppl 3:1550-4 [PMID: 12801558]
  65. Environ Epigenet. 2018 Apr 26;4(2):dvy007 [PMID: 29732171]
  66. PLoS One. 2017 Feb 1;12(2):e0170085 [PMID: 28146567]
  67. Fertil Steril. 2016 Feb;105(2):444-50 [PMID: 26604068]
  68. Fertil Steril. 2023 Sep;120(3 Pt 1):449-456 [PMID: 37086833]
  69. Asian J Androl. 2011 Jan;13(1):139-51 [PMID: 21057516]
  70. Andrologia. 2018 Apr;50(3): [PMID: 29072328]
  71. Clin Epigenetics. 2020 May 6;12(1):61 [PMID: 32375885]
  72. Eur J Hum Genet. 2014 Dec;22(12):1382-6 [PMID: 24690679]
  73. Epigenetics. 2009 Jan;4(1):27-30 [PMID: 19106644]
  74. Fertil Steril. 2015 Dec;104(6):1388-97.e1-5 [PMID: 26361204]
  75. BMJ. 2016 Nov 16;355:i5735 [PMID: 27852632]
  76. Fertil Steril. 2014 May;101(5):1359-66 [PMID: 24534276]
  77. Eur Urol. 2016 Oct;70(4):635-645 [PMID: 27113031]
  78. Epigenetics. 2017 Jul 3;12(7):505-514 [PMID: 28524769]
  79. Forensic Sci Int Genet. 2015 Nov;19:28-34 [PMID: 26057119]
  80. Clin Epigenetics. 2016 May 06;8:51 [PMID: 27158277]
  81. Fertil Steril. 2022 Mar;117(3):528-535 [PMID: 34998577]
  82. Int J Mol Sci. 2023 Sep 01;24(17): [PMID: 37686370]
  83. Reprod Biomed Online. 2016 Nov;33(5):560-567 [PMID: 27616620]
  84. Reprod Biomed Online. 2010 Jun;20(6):836-42 [PMID: 20362511]
  85. Pediatr Res. 2022 Mar;91(4):757-770 [PMID: 33674740]
  86. Hum Reprod. 2017 Oct 1;32(10):2110-2116 [PMID: 28938735]
  87. Hum Reprod. 2016 Jan;31(1):93-9 [PMID: 26537922]
  88. Environ Epigenet. 2021 Sep 21;7(1):dvab009 [PMID: 34557312]
  89. Reprod Biomed Online. 2015 Nov;31(5):593-604 [PMID: 26380863]
  90. J Transl Med. 2019 Sep 23;17(1):317 [PMID: 31547822]
  91. Environ Res. 2015 Jul;140:369-76 [PMID: 25929801]
  92. Fertil Res Pract. 2017;3: [PMID: 28480049]

Word Cloud

Created with Highcharts 10.0.0factorspredictionsperminfertilityfertilitymodellingARTpregnancyepigeneticlifestyleageenvironmentalreproductivefieldmalemayclinicpotentialoptimalmethodsincludingusewellgeneticapproachbiostatisticsmachinelearningimprovediagnosticsdatamedicalmodelspatientsclinicianssuccessWorldwiderisingproblemcouple'sexposurescaninterferehealthscientifictriesunderstandvariousprocessesfemaleaffecttranslationlimitedemphasizereasonsfailuretreatmentplanningespeciallycurrentfallsshortFirstAssistedReproductiveTechnologybecomemainstreamsolutioncouplesexperiencingcausesremainunexploredundeterminedinstancerolemengenerallyleftpreconceptionaltestingcareSecondregularlyusedstatisticalcomputationalestimateoutcomesmissimportantbiologicalfeaturessideegsmokingobesitystatusalcoholoccupationcharacteristicssuggestusingintegratednoveltyconceptincludesempiricallycollectedinformationepigenomecombinedreadilyavailablerecordspartnersneedswell-designeddifferentlevelsderivativesneededobjectivesembryologistsdifferslightlymathematicalneedadaptedaccordinglymultidisciplinaryseenbiomedicallyskilledcounsellorshelpprovideevidence-basedassistanceNextconcernschangeabilityproduceembryosembryologistbenefitpersonalizedmodelhistorypatienteasilyaccessiblegermcellsIntroducingartificialintelligenceepigeneticsclinic:novelfoundationbiomarkers

Similar Articles

Cited By

No available data.