Stable and discriminating OCT-derived radiomics features for predicting anti-VEGF treatment response in diabetic macular edema.

Sudeshna Sil Kar, Hasan Cetin, Sunil K Srivastava, Anant Madabhushi, Justis P Ehlers
Author Information
  1. Sudeshna Sil Kar: Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA.
  2. Hasan Cetin: The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  3. Sunil K Srivastava: The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  4. Anant Madabhushi: Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA.
  5. Justis P Ehlers: The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Abstract

BACKGROUND: Radiomics-based characterization of fluid and retinal tissue compartments of spectral-domain optical coherence tomography (SD-OCT) scans has shown promise to predict anti-VEGF therapy treatment response in diabetic macular edema (DME). Radiomics features are sensitive to different image acquisition parameters of OCT scanners such as axial resolution, A-scan rate, and voxel size; consequently, the predictive capability of the radiomics features might be impacted by inter-site and inter-scanner variations.
PURPOSE: The main objective of this study was (1) to develop a more generalized classifier by identifying the OCT-derived texture-based radiomics features that are both stable (across multiple scanners) as well as discriminative of therapeutic response in DME and (2) to identify the relative stability of individual radiomic features that are associated with specific spatial compartments (e/g. fluid or tissue) within the eye.
METHODS: A combination of 151 optimal responders and rebounders of anti-VEGF therapy in DME were included from the PERMEATE (imaged using Cirrus HD-OCT scanner) and VISTA clinical trials (imaged using Cirrus HD-OCT and Spectralis scanners). For each patient within the study, a set of 494 texture-based radiomics features were extracted from the fluid and the retinal tissue compartment of OCT images. The training set ( ) included 76 patients and the independent test set ) comprised of 75 patients. Features were ranked based on (i) only discriminability criteria, that is, maximizing area under the receiver operating characteristic curve (AUC) and (ii) both stability and discriminability criteria. The subset of radiomic features for which the feature expression remained relatively consistent between the two datasets, as assessed by Wilcoxon rank-sum test, were considered to be stable. Different machine learning (ML) classifiers (such as k-nearest neighbors, Random Forest, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Support Vector Machine using linear and radial basis kernel, Naive Bayes) were trained using the features selected based on both the stability and discriminability criteria on and then subsequently validated on . The ML classifier ( ) that yielded maximum AUC on was considered to be more generalized and stable for distinguishing anti-VEGF therapy treatment response as well as less sensitive to the effect of inter-site and inter-scanner variability.
RESULTS: The model (based on both stability and discriminability criteria) achieved higher AUC compared to the criteria based off feature discrimination alone on (maximum AUCs of 0.9 versus 0.81; p-value = 0.048). The texture-based radiomic features pertaining to the retinal tissue compartment were found to be more stable compared to the fluid related features across the two datasets.
CONCLUSIONS: Our study suggests that incorporating both stable and discriminatory texture-based radiomic features extracted from fluid and retinal tissue compartments of OCT scans, a more generalized radiomic classifier can be developed to predict therapeutic response in DME. Also, the feature stability was found to be a function of the spatial location within the eye from where the features were extracted.

Keywords

References

  1. Chen TC, Hoguet A, Junk AK, et al. Spectral���Domain OCT: helping the clinician diagnose glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125(11):1817���1827. 10.1016/j.ophtha.2018.05.008. Epub 2018 Jul 7. Erratum in: Ophthalmology. 2019 Jun;126(6):915.
  2. Ehlers JP, Zahid R, Kaiser PK, et al. Longitudinal assessment of ellipsoid zone integrity, subretinal hyperreflective material, and subretinal pigment epithelium disease in neovascular age���related macular degeneration. Ophthalmol Retina. 2021;5(12):1204���1213. 10.1016/j.oret.2021.02.012. Epub 2021 Feb 26.
  3. Ehlers JP, Uchida A, Hu M, et al. Higher���order assessment of OCT in diabetic macular edema from the VISTA Study: ellipsoid zone dynamics and the retinal fluid index. Ophthalmol Retina. 2019;3(12):1056���1066. 10.1016/j.oret.2019.06.010. Epub 2019 Jul 6.
  4. Kalra G, Talcott KE, Kaiser S, et al. Machine learning���based automated detection of hydroxychloroquine toxicity and prediction of future toxicity using higher���order OCT biomarkers. Ophthalmol Retina. 2022;6(12):1241���1252. 10.1016/j.oret.2022.05.031
  5. Korobelnik JF, Do DV, Schmidt���Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247���2254. 10.1016/j.ophtha.2014.05.006. Epub 2014 Jul 8.
  6. Maheshwary AS, Oster SF, Yuson RM, Cheng L, Mojana F, Freeman WR. The association between percent disruption of the photoreceptor inner segment���outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol. 2010;150:63���67 e1.
  7. A Alasil T, Keane PA, Updike JF, et al. Relationship between optical coherence tomography retinal parameters and visual acuity in diabetic macular edema. Ophthalmology. 2010;117(12):2379���2386. 10.1016/j.ophtha.2010.03.051. Epub 2010 Jun 18.
  8. Ugwuegbu O, Uchida A, Singh RP, et al. Quantitative assessment of outer retinal layers and ellipsoid zone mapping in hydroxychloroquine retinopathy. Br J Ophthalmol. 2019;103(1):3���7. 10.1136/bjophthalmol���2018���312363. Epub 2018 Sep 6.
  9. Banaee T, Singh RP, Champ K, et al. Ellipsoid zone mapping parameters in retinal venous occlusive disease with associated macular edema. Ophthalmol Retina. 2018;2(8):836���841. 10.1016/j.oret.2017.11.009. Epub 2018 Jan 6.
  10. Itoh Y, Ehlers JP. Ellipsoid zone mapping and outer retinal characterization after intravitreal ocriplasmin. Retina. 2016;36(12):2290���2296. 10.1097/IAE.0000000000001110
  11. Pe'er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E. Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. Br J Ophthalmol. 1996;80(3):241���245.
  12. Kar SS, Sevgi DD, Dong V, Srivastava SK, Madabhushi A, Ehlers JP. Multi���Compartment spatially���derived radiomics from optical coherence tomography predict anti���VEGF treatment durability in macular edema secondary to retinal vascular disease: preliminary findings. IEEE J Transl Eng Health Med. 10.1109/JTEHM.2021.3096378
  13. Kar SS, Cetin H, Lunasco L, et al. OCT���derived radiomic features predict anti���VEGF response and durability in neovascular age���related macular degeneration. Ophthalmol Sci. 2022;2(4):100171. 10.1016/j.xops.2022.100171
  14. Styner MA, Charles HC, Park J, et al. Multisite validation of image analysis methods: assessing intra��� and intersite variability. Proc SPIE Int Soc Opt Eng. 2002;46841:278���286.
  15. Um H, Tixier F, Bermudez D, et al. Impact of image preprocessing on the scanner dependence of multi���parametric MRI radiomic features and covariate shift in multi���institutional glioblastoma datasets. Phys Med Biol. 2019;64:165011. Medline.
  16. Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428. Medline.
  17. Leo P, Lee G, Shih NC, et al. Evaluating stability of histomorphometric features across scanner and staining variations: prostate cancer diagnosis from whole slide images. J Med Imaging (Bellingham). 2016;3:047502. Medlin.
  18. Hiremath A, Shiradkar R, Merisaari H, et al. Test���retest repeatability of a deep learning architecture in detecting and segmenting clinically significant prostate cancer on apparent diffusion coefficient (ADC) maps. Eur Radiol. 2021;31:379���391. Medline.
  19. Merisaari H, Taimen P, Shiradkar R, et al. Repeatability of radiomics and machine learning for DWI: short���term repeatability study of 112 patients with prostate cancer. Magn Reson Med 2020;83:2293���2309. Medline14.
  20. Khorrami M, Bera K, Thawani R, et al. Distinguishing granulomas from adenocarcinomas by integrating stable and discriminating radiomic features on non���contrast computed tomography scans. Eur J Cancer. 2021;148:146���158. 10.1016/j.ejca.2021.02.008. Epub 2021 Mar 17.
  21. Verma R, Hill VB, Statsevych V, et al. Stable and discriminatory radiomic features from the tumor and its habitat associated with progression���free survival in glioblastoma: a multi���institutional study. AJNR Am J Neuroradiol. 2022;43(8):1115���1123. 10.3174/ajnr.A7591
  22. Leung CK, Ye C, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral���domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. Ophthalmology. 2010;117:267���274.
  23. Araie M. Test���retest variability in structural parameters measured with glaucoma imaging devices. Jpn J Ophthalmol. 2013;57:1���24.
  24. Wang J, Shousha MA, Perez VL. Ultra���high resolution optical coherence tomography for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging. 2011;42:15���27. Suppl.
  25. Min X, Li M, Dong D, et al. Multi���parametric MRI���based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross���validation of a machine learning method. Eur J Radiol. 2019;115:16���21. 10.1016/j.ejrad.2019.03.010. Epub 2019 Mar 15.
  26. Cuocolo R, Stanzione A, Ponsiglione A, et al. Clinically significant prostate cancer detection on MRI: a radiomic shape features study. Eur J Radiol. 2019;116:144���149. 10.1016/j.ejrad.2019.05.006. Epub 2019 May 7.
  27. Figueiredo N, Srivastava SK, Singh RP, et al. Longitudinal panretinal leakage and ischemic indices in retinal vascular disease after aflibercept therapy: the PERMEATE Study. Ophthalmol Retina. 2020;4:154���163.
  28. Heier JS, Korobelnik JF, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148���week results from the VISTA and VIVID studies. Ophthalmology. 2016;123(11):2376���2385.
  29. Ehlers JP, Peripheral and macular retinal vascular perfusion and leakage in DME and RVO (PERMEATE). [Online] Available: https://clinicaltrials.gov/ct2/show/NCT02503540
  30. Korobelnik JF, Do DV, Schmidt���Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247���2254.
  31. Brown DM, Schmidt���Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100���week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044���2052.
  32. RMHaralick KS, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC���3(6):610���621. doi:10.1109/TSMC.1973.4309314
  33. Laws KI, Textured image segmentation. University of Southern California Los Angeles Image Processing Inst, 1980. Report No.: USCIPI���940. Accessed November 24, 2016 http://www.dtic.mil/docs/citations/ADA083283
  34. Jain AK, Farrokhnia F, ���Unsupervised texture segmentation using Gabor filters,��� 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, Los Angeles, CA, USA, 1990, pp. 14���19, 10.1109/ICSMC.1990.142050
  35. Prasanna P, et al. Co���occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptor. Sci Rep. 2016;6:37241. 10.1038/srep37241
  36. Leite MT, Rao HL, Zangwill LM, et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118:1334e1339.
  37. Lee EJ, Lee KM, Kim H, Kim TW. Glaucoma diagnostic ability of the new circumpapillary retinal nerve fiber layer thickness analysis based on Bruch's membrane opening. Invest Ophthalmol Vis Sci. 2016;57:4194e4204.
  38. Yang H, Lee HS, Bae HW, et al. Effect of image quality fluctuations on the repeatability of thickness measurements in swept���source optical coherence tomography. Sci Rep. 2020;10:13897. 10.1038/s41598���020���70852���y
  39. Prenosil GA, Weitzel T, Fu��rstner M, Hentschel M, Krause T, Cumming P, et al. Towards guidelines to harmonize textural features in PET: haralick textural features vary with image noise, but exposure���invariant domains enable comparable PET radiomics. PLoS One. 2020;15(3):e0229560. 10.1371/journal.pone.0229560
  40. Caramella C, Allorant A, Orlhac F, et al. Can we trust thecalculation of texture indices of CT images? A phantom study. Med Phys. 2018;45(4):1529e36. 10.1002/mp.12809

Grants

  1. IP30EY025585/NIH-NEI P30
  2. /The Research to Prevent Blindness, Inc
  3. K23-EY022947-01A1/Cleveland Eye Bank Foundation awarded to the Cole Eye Institute
  4. R01CA249992/NCI NIH HHS
  5. R01CA202752/NCI NIH HHS
  6. R01CA208236/NCI NIH HHS
  7. R01CA216579/NCI NIH HHS
  8. R01CA220581/NCI NIH HHS
  9. R01CA257612/NCI NIH HHS
  10. R01CA268207A1/NCI NIH HHS
  11. U01CA239055/NCI NIH HHS
  12. U01CA248226/NCI NIH HHS
  13. U54CA254566/NCI NIH HHS
  14. R01HL151277/National Heart, Lung and Blood Institute
  15. R01HL158071/National Heart, Lung and Blood Institute
  16. R43EB028736/NIBIB NIH HHS
  17. C06 RR12463-01/NCRR NIH HHS
  18. IBX004121A/VA Merit Review
  19. /United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service
  20. W81XWH-19-1-0668/Breast Cancer Research Program
  21. W81XWH-15-1-0558/Prostate Cancer Research Program
  22. W81XWH-20-1-0851/Prostate Cancer Research Program
  23. W81XWH-18-1-0440/Lung Cancer Research Program
  24. W81XWH-20-1-0595/Lung Cancer Research Program
  25. W81XWH-18-1-0404/Peer Reviewed Cancer Research Program
  26. W81XWH-21-1-0345/Peer Reviewed Cancer Research Program
  27. /Kidney Precision Medicine Project
  28. /Bristol Myers-Squibb, Boehringer-Ingelheim, Eli-Lilly
  29. /Astrazeneca

Word Cloud

Created with Highcharts 10.0.0featuresstabilityfluidtissueresponseradiomicsstableradiomicdiscriminabilitycriteriaretinalanti-VEGFtherapyDMEtexture-basedusingbasedcompartmentstreatmentdiabeticmacularedemaOCTscannersstudygeneralizedclassifierwithinsetextractedAUCfeaturecoherencetomographyscanspredictsensitiveinter-siteinter-scannerOCT-derivedacrosswelltherapeuticspatialeyeincludedimagedCirrusHD-OCTcompartmentpatientstesttwodatasetsconsideredMLDiscriminantAnalysismaximumcompared0foundBACKGROUND:Radiomics-basedcharacterizationspectral-domainopticalSD-OCTshownpromiseRadiomicsdifferentimageacquisitionparametersaxialresolutionA-scanratevoxelsizeconsequentlypredictivecapabilitymightimpactedvariationsPURPOSE:mainobjective1developidentifyingmultiplediscriminative2identifyrelativeindividualassociatedspecifice/gMETHODS:combination151optimalrespondersreboundersPERMEATEscannerVISTAclinicaltrialsSpectralispatient494imagestraining76independentcomprised75FeaturesrankedmaximizingareareceiveroperatingcharacteristiccurveiisubsetexpressionremainedrelativelyconsistentassessedWilcoxonrank-sumDifferentmachinelearningclassifiersk-nearestneighborsRandomForestLinearQuadraticSupportVectorMachinelinearradialbasiskernelNaiveBayestrainedselectedsubsequentlyvalidatedyieldeddistinguishinglesseffectvariabilityRESULTS:modelachievedhigherdiscriminationaloneAUCs9versus81p-value = 0048pertainingrelatedCONCLUSIONS:suggestsincorporatingdiscriminatorycandevelopedAlsofunctionlocationStablediscriminatingpredictinganti���VEGFspectraldomain���optical

Similar Articles

Cited By