The rodent electronic nicotine delivery system: Apparatus for voluntary nose-only e-cigarette aerosol inhalation.

Amy L Odum, Mariah E Willis-Moore, Kiernan T Callister, Jeremy M Haynes, Charles C J Frye, Lucy N Scribner, David N Legaspi, Daniel Santos Da Silva, Aaron L Olsen, Tadd T Truscott, Preston T Alden, Rick A Bevins, Adam M Leventhal, Stephen T Lee, Brenna Gomer, Abby D Benninghoff
Author Information
  1. Amy L Odum: Utah State University, Logan, UT, USA. ORCID
  2. Mariah E Willis-Moore: Utah State University, Logan, UT, USA. ORCID
  3. Kiernan T Callister: Utah State University, Logan, UT, USA. ORCID
  4. Jeremy M Haynes: Temple University, Philadelphia, PA, USA.
  5. Charles C J Frye: Cameron University, Lawton, OK, USA.
  6. Lucy N Scribner: Utah State University, Logan, UT, USA.
  7. David N Legaspi: Utah State University, Logan, UT, USA.
  8. Daniel Santos Da Silva: Utah State University, Logan, UT, USA. ORCID
  9. Aaron L Olsen: Utah State University, Logan, UT, USA.
  10. Tadd T Truscott: King Abdullah University of Science and Technology, Thuwal, Makkah Province, Saudi Arabia. ORCID
  11. Preston T Alden: Utah State University, Logan, UT, USA.
  12. Rick A Bevins: University of Nebraska-Lincoln, Lincoln, NE, USA. ORCID
  13. Adam M Leventhal: University of Southern California, Los Angeles, CA, USA.
  14. Stephen T Lee: Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA.
  15. Brenna Gomer: University of Utah, Salt Lake City, UT, USA.
  16. Abby D Benninghoff: Utah State University, Logan, UT, USA.

Abstract

Tobacco use is the leading cause of death globally and in the United States. After decades of decline, driven by decreases in combusted tobacco use, nicotine product use has increased due to electronic nicotine delivery systems, also known as e-cigarettes or vapes. Preclinical models of nicotine self-administration can serve as important lodestars in the search for effective intervention and prevention tactics. Current variants of the preclinical models have substantial limitations, however. Therefore, we created the rodent electronic nicotine delivery system (RENDS), a novel low-cost nonproprietary nose-only preclinical model of nicotine aerosol self-administration. We confirmed that RENDS sequesters nicotine aerosol in the nose port by measuring fine particulate matter (PM���<2.5 microns) generated by e-cigarettes. We also showed that rats robustly self-administer flavored nicotine aerosol, resulting in high blood levels of cotinine (the major nicotine metabolite) and spontaneous somatic withdrawal symptoms. Thus, we provide validation of the operation and function of the RENDS, opening the door to an open-source preclinical aerosol model of nicotine self-administration that is relatively low in cost. Four existing operant chambers can be retrofitted with the RENDS for less than $325/chamber. All RENDS diagrams and plans for custom-designed components are on Open Science Framework (https://osf.io/x2pqf/?view_only=775b55435b8e428f98e6da384ef7889d).

Keywords

References

  1. Abraham, A. D., Wiley, J. L., & Marusich, J. A. (2023). Experimenter administered ��9���THC decreases nicotine self���administration in a rat model. Pharmacology Biochemistry and Behavior, 231, Article 173632. https://doi.org/10.1016/j.pbb.2023.173632
  2. Adams, M. A., & Conway, T. L. (2014). Eta squared. In A. C. Michalos (Ed.), Encyclopedia of quality of life and well���being research. Springer. https://doi.org/10.1007/978-94-007-0753-5_918
  3. Aguiar, L. A. A., de Vasconcelos, N. A. P., Tunes, G. C., Fontenele, A. J., de Albuquerque Nogueira, R., Reyes, M. B., & Carelli, P. V. (2020). Low���cost open hardware system for behavioural experiments simultaneously with electrophysiological recordings. HardwareX, 8, Article e00132. https://doi.org/10.1016/j.ohx.2020.e00132
  4. Alanazi, A. M. M., Alqahtani, M. M., Pavela, G., Ford, E. W., Leventhal, A. M., & Hendricks, P. S. (2020). Mental health and the association between asthma and e���cigarette use among young adults in the United States: A mediation analysis. International Journal of Environmental Research and Public Health, 17(23), Article 8799. https://doi.org/10.3390/ijerph17238799
  5. Audrain���McGovern, J., Strasser, A. A., & Wileyto, E. P. (2016). The impact of flavoring on the rewarding and reinforcing value of e���cigarettes with nicotine among young adult smokers. Drug and Alcohol Dependence, 166, 263���267. https://doi.org/10.1016/j.drugalcdep.2016.06.030
  6. Bagdas, D., Kebede, N., Zepei, A. M., Harris, L., Minanov, K., Picciotto, M. R., & Addy, N. A. (2022). Animal models to investigate the impact of flavors on nicotine addiction and dependence. Current Neuropharmacology, 20(11), 2175���2201. https://doi.org/10.2174/1570159X20666220524120231
  7. Baker, A. N., Wilson, S. J., & Hayes, J. E. (2021). Flavor and product messaging are the two most important drivers of electronic cigarette selection in a choice���based task. Scientific Reports, 11, Article 4689. https://doi.org/10.1038/s41598-021-84332-4
  8. Baldassarri, S. R. (2020). Electronic cigarettes: Past, present, and future: What clinicians need to know. Clinics in Chest Medicine, 41(4), 797���807. https://doi.org/10.1016/j.ccm.2020.08.018
  9. Barrett, S. T., & Bevins, R. A. (2012). A quantitative analysis of the reward���enhancing effects of nicotine using reinforcer demand. Behavioural Pharmacology, 23(8), 781���789. https://doi.org/10.1097/FBP.0b013e32835a38d9
  10. Barrett, S. T., & Bevins, R. A. (2013). Nicotine enhances operant responding for qualitatively distinct reinforcers under maintenance and extinction conditions. Pharmacology Biochemistry and Behavior, 114���115, 9���15. https://doi.org/10.1016/j.pbb.2013.10.012
  11. Barrett, S. T., McNealy, K. R., Ramirez, H., Flynn, A., & Bevins, R. A. (2025). Pavlovian conditioning with the internal stimulus effects of nicotine heightens later nicotine taking with variation by dose and sex. Scientific Reports, 15(1), Article 5500. https://doi.org/10.1038/s41598���024���84145���1
  12. Barrett, S. T., & Odum, A. L. (2011). The effects of repeated exposure on the reward���enhancing effects of nicotine. Behavioural Pharmacology, 22(4), 283���290. https://doi.org/10.1097/FBP.0b013e3283473c25
  13. Belluzzi, J. D., Wang, R., & Leslie, F. M. (2005). Acetaldehyde enhances acquisition of nicotine self���administration in adolescent rats. Neuropsychopharmacology, 30(4), 705���712. https://doi.org/10.1038/sj.npp.1300586
  14. Besheer, J., & Bevins, R. A. (2003). Impact of nicotine withdrawal on novelty reward and related behaviors. Behavioral Neuroscience, 117(2), 327���340. https://doi.org/10.1037/0735-7044.117.2.327
  15. Bevins, R. A., Barrett, S. T., Huynh, Y. W., Thompson, B. M., Kwan, D. A., & Murray, J. E. (2018). Experimental analysis of behavior and tobacco regulatory research on nicotine reduction. Journal of the Experimental Analysis of Behavior, 110(1), 1���10. https://doi.org/10.1002/jeab.439
  16. Bevins, R. A., & Palmatier, M. I. (2004). Extending the role of associative learning processes in nicotine addiction. Behavioral and Cognitive Neuroscience Reviews, 3(3), 143���158. https://doi.org/10.1177/1534582304272005
  17. Birdsey, J., Cornelius, M., Jamal, A., Park���Lee, E., Cooper, M. R., Wang, J., Sawdey, M. D., Cullen, K. A., & Neff, L. (2023). Tobacco product use among US middle and high school students���National Youth Tobacco Survey, 2023. MMWR. Morbidity and Mortality Weekly Report, 72(44), 1173���1182. 10.15585/mmwr.mm7244a1
  18. Brown, P. L., & Jenkins, H. M. (1968). Auto���shaping of the pigeon's key���peck. Journal of the Experimental Analysis of Behavior, 11(1), 1���8. https://doi.org/10.1901/jeab.1968.11-1
  19. Buscher, N., Ojeda, A., Francoeur, M., Hulyalkar, S., Claros, C., Tang, T., Terry, A., Gupta, A., Fakhraei, L., & Ramanathan, D. S. (2020). Open���source raspberry Pi���based operant box for translational behavioral testing in rodents. Journal of Neuroscience Methods, 342, Article 108761. https://doi.org/10.1016/j.jneumeth.2020.108761
  20. Buynitsky, T., & Mostofsky, D. I. (2009). Restraint stress in biobehavioral research: Recent developments. Neuroscience & Biobehavioral Reviews, 33(7), 1089���1098. https://doi.org/10.1016/j.neubiorev.2009.05.004
  21. Castro, E. M., Lotfipour, S., & Leslie, F. M. (2023). Nicotine on the developing brain. Pharmacological Research, 190, Article 106716. https://doi.org/10.1016/j.phrs.2023.106716
  22. Centers for Disease Control and Prevention. (2024). Health effects of vaping. https://www.cdc.gov/tobacco/e-cigarettes/health-effects.html
  23. Chaudhri, N., Caggiula, A. R., Donny, E. C., Booth, S., Gharib, M., Craven, L., Palmatier, M. I., Lie, X., & Sved, A. F. (2007). Self���administered and noncontingent nicotine enhance reinforced operant responding in rats: Impact of nicotine dose and reinforcement schedule. Psychopharmacology, 190, 353���362. https://doi.org/10.1007/s00213-006-0454-8
  24. Chellian, R., Behnood���Rod, A., & Bruijnzeel, A. W. (2023). Development of dependence in smokers and rodents with voluntary nicotine intake: Similarities and differences. Nicotine & Tobacco Research, 25(7), 1229���1240. https://doi.org/10.1093/ntr/ntac280
  25. Chellian, R., Behnood���Rod, A., & Bruijnzeel, A. W. (2024). Sex differences in nicotine intake and relapse behavior in nicotine���dependent adult Wistar rats. Frontiers in Pharmacology, 15, Article 1415219. https://doi.org/10.3389/fphar.2024.1415219
  26. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
  27. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  28. Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35(3), 124���129. https://doi.org/10.1080/00031305.1981.10479327
  29. Cooper, S. Y., Olszewski, N. A., Tetteh���Quarshie, S., Hill, S. P., Ghodsi, S., Gonz��lez���Castro, A., Willis, C. V., & Henderson, B. J. (2024). The impact of high or low doses of nicotine in a mouse model of vapor self���administration. Nicotine & Tobacco Research, 26(3), 316���323. https://doi.org/10.1093/ntr/ntad136
  30. Cooper, S. Y., Willis, C. V., Richardson, M. R., Hill, S. P., Wright, S. K., Elmore, M. B., Mitchell, Z. B., Gonz��lez Castro, A. K., & Henderson, B. J. (2023). Chemical flavorants in vaping products alter neurobiology in a sex���dependent manner to promote vaping���related behaviors. Journal of Neuroscience, 43(8), 1360���1374. https://doi.org/10.1523/JNEUROSCI.0755-22.2022
  31. Corley, C., Craig, A., Sadek, S., Marusich, J. A., Chehimi, S. N., White, A. M., Holdiness, L. J., Reiner, B. C., & Gipson, C. D. (2024). Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options. Pharmacology, Biochemistry, and Behavior, 243, Article 173836. https://doi.org/10.1016/j.pbb.2024.173836
  32. Cornelius, M. E., Loretan, C. G., Wang, T. W., Jamal, A., & Homa, D. M. (2022). Tobacco product use among adults���United States, 2020. MMWR. Morbidity and Mortality Weekly Report, 71(11), 397���405. https://doi.org/10.15585/mmwr.mm7111a1
  33. Cullen, K. A., Ambrose, B. K., Gentzke, A. S., Apelberg, B. J., Jamal, A., & King, B. A. (2018). Notes from the field: Use of electronic cigarettes and any tobacco product among middle and high school students ��� United States, 2011���2018. Morbidity and Mortality Weekly Report, 67(45), 1276���1277. https://doi.org/10.15585/mmwr.mm6745a5
  34. Cullen K. A., Gentzke, A. S, Sawdey M. D., Chang, J. T., Anic, G. M., Wang, T. W., Creamer, M. R., Jamal, J., Ambrose, B. K., & King, B. A. (2019). E���cigarette use among youth in the United States. Journal of the American Medical Association, 322(21), 2095���2103. https://doi.org/10.1001/jama.2019.18387
  35. DeVito, E. E., & Krishnan���Sarin, S. (2018). E���cigarettes: Impact of e���liquid components and device characteristics on nicotine exposure. Current Neuropharmacology, 16(4), 438���459. https://doi.org/10.2174/1570159X15666171016164430
  36. Donny, E. C., Caggiula, A. R., Mielke, M. M., Jacobs, K. S., Rose, C., & Sved, A. F. (1998). Acquisition of nicotine self���administration in rats: The effects of dose, feeding schedule, and drug contingency. Psychopharmacology, 136, 83���90. https://doi.org/10.1007/s002130050542
  37. Duke, D., Wohlgemuth, E., Adams, K. R., Armstrong���Ingram, A., Rice, S. K., & Young, D. C. (2022). Earliest evidence for human use of tobacco in the Pleistocene Americas. Nature Human Behaviour, 6(2), 183���192. https://doi.org/10.1038/s41562-021-01202-9
  38. England, L. J., Bunnell, R. E., Pechacek, T. F., Tong, V. T., & McAfee, T. A. (2015). Nicotine and the developing human: A neglected element in the electronic cigarette debate. American Journal of Preventive Medicine, 49(2), 286���293. https://doi.org/10.1016/j.amepre.2015.01.015
  39. Escobar, R., Guti��rrez, B., & Benavides, R. (2022). 3D���printed operant chambers for rats: Design, assembly, and innovations. Behavioural Processes, 199, Article 104647. https://doi.org/10.1016/j.beproc.2022.104647
  40. Escobar, R., & P��rez���Herrera, C. A. (2015). Low���cost USB interface for operant research using Arduino and Visual Basic. Journal of the Experimental Analysis of Behavior, 103(2), 427���435. https://doi.org/10.1002/jeab.135
  41. Ferster, C. B., & Skinner, B. F. (1957). Variable ratio. In C. B. Ferster & B. F. Skinner (Eds.), Schedules of reinforcement (pp. 396���419). Appleton���Century���Crofts. https://doi.org/10.1037/10627-007
  42. Fleshler, M., & Hoffman, H. S. (1962). A progression for generating variable���interval schedules. Journal of the Experimental Analysis of Behavior, 5(4), 529���530. https://doi.org/10.1901/jeab.1962.5-529
  43. Frie, J. A., McCunn, P., Eed, A., Hassan, A., Luciani, K. R., Chen, C., Tyndale, R. F., & Khokhar, J. Y. (2023). Factors influencing JUUL e���cigarette nicotine vapour���induced reward, withdrawal, pharmacokinetics and brain connectivity in rats: Sex matters. Neuropsychopharmacology, 49(5), 782���795. https://doi.org/10.1038/s41386-023-01773-3
  44. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675���701. https://doi.org/10.2307/2279372
  45. Gurley, K. (2019). Two open source designs for a low���cost operant chamber using Raspberry Pi. Journal of the Experimental Analysis of Behavior, 111(3), 508���518. https://doi.org/10.1002/jeab.520
  46. Hair, E. C., Barton, A. A., Perks, S. N., Kreslake, J., Xiao, H., Pitzer, L., Leventhal, A. M., & Vallone, D. M. (2021). Association between e���cigarette use and future combustible cigarette use: Evidence from a prospective cohort of youth and young adults, 2017���2019. Addictive Behaviors, 112, Article 106593. https://doi.org/10.1016/j.addbeh.2020.106593
  47. Henderson, B. J., Young, L. E., Olszewski, N. A., Tetteh���Quarshie, S., Maddox, S. K., Simpkins, M. A., Dudich, M. C., McGlauglin, M. S., Weinsweig, Z. C., & Cooper, S. Y. (2024). Age���dependent effects of vaping on the prefrontal cortex, ventral tegmental area, and nucleus accumbens. Communications Biology, 7(1), Article 1553. https://doi.org/10.1038/s42003-024-07272-5
  48. Herman, M., & Tarran, R. (2020). E���cigarettes, nicotine, the lung and the brain: Multi���level cascading pathophysiology. The Journal of Physiology, 598(22), 5063���5071. https://doi.org/10.1113/JP278388
  49. Jackson, A., Grobman, B., & Krishnan���Sarin, S. (2020). Recent findings in the pharmacology of inhaled nicotine: Preclinical and clinical in vivo studies. Neuropharmacology, 176, Article 108218. https://doi.org/10.1016/j.neuropharm.2020.108218
  50. Kelsh, S., Ottney, A., Young, M., Kelly, M., Larson, R., & Sohn, M. (2023). Young adults' electronic cigarette use and perceptions of risk. Tobacco Use Insights, 16. https://doi.org/10.1177/1179173X231161313
  51. Koffarnus, M. N., & Winger, G. (2015). Individual differences in the reinforcing and punishing effects of nicotine in rhesus monkeys. Psychopharmacology, 232, 2393���2403. https://doi.org/10.1007/s00213-015-3871-8
  52. Kogel, U., Wong, E. T., Szostak, J., Tan, W. T., Lucci, F., Leroy, P., Titz, B., Xiang, Y., Low, T., Wong, S. K., Guedj, E., Ivanov, N. V., Schlage, W. K., Peitsch, M. C., Kuczaj, A., Vanscheeuwijck, P., & Hoeng, J. (2021). Impact of whole���body versus nose���only inhalation exposure systems on systemic, respiratory, and cardiovascular endpoints in a 2���month cigarette smoke exposure study in the ApoE���/��� mouse model. Journal of Applied Toxicology, 41(10), 1598���1619. https://doi.org/10.1002/jat.4149
  53. Kurien, B. T., Everds, N. E., & Scofield, R. H. (2004). Experimental animal urine collection: A review. Laboratory Animals, 38(4), 333���361. https://doi.org/10.1258/0023677041958945
  54. Kyonka, E. G. E., Mitchell, S. H., & Bizo, L. A. (2019). Beyond inference by eye: Statistical and graphing practices in JEAB, 1992���2017. Journal of the Experimental Analysis of Behavior, 111(2), 155���165. https://doi.org/10.1002/jeab.509
  55. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t���tests and ANOVAs. Frontiers in Psychology, 4, Article 863. https://doi.org/10.3389/fpsyg.2013.00863
  56. Lallai, V., Chen, Y. C., Roybal, M. M., Kotha, E. R., Fowler, J. P., Staben, A., Cortez, A., & Fowler, C. D. (2021). Nicotine e���cigarette vapor inhalation and self���administration in a rodent model: Sex��� and nicotine delivery���specific effects on metabolism and behavior. Addiction Biology, 26(6), Article e13024. https://doi.org/10.1111/adb.13024
  57. Lattal, K. A. (1975). Reinforcement contingencies as discriminative stimuli. Journal of the Experimental Analysis of Behavior, 23(2), 241���246. https://doi.org/10.1901/jeab.1975.23-241
  58. Lattal, K. A. (1995). Contingency and behavior analysis. The Behavior Analyst, 18, 209���224. https://doi.org/10.1007/BF03392709
  59. Le Foll, B., Piper, M. E., Fowler, C. D., Tonstad, S., Bierut, L., Lu, L., Prabhat, J., & Hall, W. D. (2022). Tobacco and nicotine use. Nature Reviews Disease Primers, 8(1), Article 19. https://doi.org/10.1038/s41572-022-00346-w
  60. Leslie, F. M. (2020). Unique, long���term effects of nicotine on adolescent brain. Pharmacology, Biochemistry, and Behavior, 197, Article 173010. https://doi.org/10.1016/j.pbb.2020.173010
  61. Leventhal, A., Cho, J., Barrington���Trimis, J., Pang, R., Schiff, S., & Kirkpatrick, M. (2020). Sensory attributes of e���cigarette flavours and nicotine as mediators of interproduct differences in appeal among young adults. Tobacco Control, 29(6), 679���686. https://doi.org/10.1136/tobaccocontrol-2019-055172
  62. Leventhal, A. M., Goldenson, N. I., Cho, J., Kirkpatrick, M. G., McConnell, R. S., Stone, M. D., Pang, R. D., Audrain���McGovern, J., & Barrington���Trimis, J. L. (2019). Flavored e���cigarette use and progression of vaping in adolescents. Pediatrics, 144(5), Article e20190789. https://doi.org/10.1542/peds.2019-0789
  63. Leventhal, A. M., Madden, D. R., Peraza, N., Schiff, S. J., Lebovitz, L., Whitted, L., Barrington���Trimis, J., Mason, T. B., Anderson, M. K., & Tackett, A. P. (2021). Effect of exposure to e���cigarettes with salt vs free���base nicotine on the appeal and sensory experience of vaping: A randomized clinical trial. JAMA Network Open, 4(1), Article e2032757. 10.1001/jamanetworkopen.2020.32757
  64. Leyrer���Jackson, J. M., Overby, P. F., Bull, A., Marusich, J. A., & Gipson, C. D. (2021). Strain and sex matters: Differences in nicotine self���administration between outbred and recombinase���driver transgenic rat lines. Experimental and Clinical Psychopharmacology, 29(4), 375���384. https://doi.org/10.1037/pha0000376
  65. Li, L., Lin, Y., Xia, T., & Zhu, Y. (2020). Effects of electronic cigarettes on indoor air quality and health. Annual Review of Public Health, 41, 363���380. https://doi.org/10.1146/annurev-publhealth-040119-094043
  66. Lucci, F., Tan, W. T., Krishnan, S., Hoeng, J., Vanscheeuwijck, P., Jaeger, R., & Kuczaj, A. (2020). Experimental and computational investigation of a nose���only exposure chamber. Aerosol Science and Technology, 54(3), 277���290. https://doi.org/10.1080/02786826.2019.1687843
  67. Lynch W. J. (2009). Sex and ovarian hormones influence vulnerability and motivation for nicotine during adolescence in rats. Pharmacology, Biochemistry, and Behavior, 94(1), 43���50. https://doi.org/10.1016/j.pbb.2009.07.004
  68. Malin, D. H., Lake, J. R., Newlin���Maultsby, P., Roberts, L. K., Lanier, J. G., Carter, V. A., Cunningham, J. S., & Wilson, O. B. (1992). Rodent model of nicotine abstinence syndrome. Pharmacology, Biochemistry, and Behavior, 43(3), 779���784. https://doi.org/10.1016/0091-3057(92)90408-8
  69. Malin, D. H., Lake, J. R., Payne, M. C., Short, P. E., Carter, V. A., Cunningham, J. S., & Wilson, O. B. (1996). Nicotine alleviation of nicotine abstinence syndrome is naloxone���reversible. Pharmacology, Biochemistry, and Behavior, 53(1), 81���85. https://doi.org/10.1016/0091-3057(95)00202-2
  70. Malin, D. H., Lake, J. R., Shenoi, M., Upchurch, T. P., Johnson, S. C., Schweinle, W. E., & Cadle, C. D. (1998). The nitric oxide synthesis inhibitor nitro���L���arginine (L���NNA) attenuates nicotine abstinence syndrome in the rat. Psychopharmacology, 140, 371���377. https://doi.org/10.1007/s002130050778
  71. Marusich, J. A., & Palmatier, M. I. (2023). Development of a nicotine aerosol self���administration model in rats and the effects of e���liquid flavors. Behavioural Pharmacology, 34(2���3), 141���153. https://doi.org/10.1097/FBP.0000000000000717
  72. Morris, A. M., Leonard, S. S., Fowles, J. R., Boots, T. E., Mnatsakanova, A., & Attfield, K. R. (2021). Effects of e���cigarette flavoring chemicals on human macrophages and bronchial epithelial cells. International Journal of Environmental Research and Public Health, 18(21), Article 11107. https://doi.org/10.3390/ijerph182111107
  73. Moussawi, K., Ortiz, M. M., Gantz, S. C., Tunstall, B. J., Marchette, R. C. N., Bonci, A., Koob, G. F., & Vendruscolo, L. F. (2020). Fentanyl vapor self���administration model in mice to study opioid addiction. Science Advances, 6(32), Article eabc0413. https://doi.org/10.1126/sciadv.abc0413
  74. National Centre for the Replacement Refinement & Reduction of Animals in Research (NC3Rs). (n.d.). The 3Rs. https://www.nc3rs.org.uk/who-we-are/3rs
  75. National Centre for the Replacement Refinement & Reduction of Animals in Research (2022, March 23). Blood sampling: Rat. NC3Rs. https://nc3rs.org.uk/3rs-resources/blood-sampling/blood-sampling-rat
  76. Odum, A. L., Callister, K. T., Willis���Moore, M. E., Da Silva, D. S., Legaspi, D. N., Scribner, L. N., & Hannah, J. N. (2024). Zoographics in the Journal of the Experimental Analysis of Behavior: Increasing inclusion of female animals. Journal of the Experimental Analysis of Behavior, 122(3), 392���407. https://doi.org/10.1002/jeab.4220
  77. Park, H., O'Sullivan, M., Vallarino, J., Shumyatcher, M., Himes, B., Park, J., Christiani, D. C., Allen, J., & Lu, Q. (2019). Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Nature, 9(1400), 1���11. https://doi.org/10.1038/s41598-018-37913-9
  78. Park, M. B., & Choi, J. K. (2019). Differences between the effects of conventional cigarettes, e���cigarettes and dual product use on urine cotinine levels. Tobacco Induced Diseases, 17, Article 100527. 10.18332/tid/100527
  79. Park���Lee, E., Ren, C., Sawdey, M. D., Gentzke, A. S., Cornelius, M., Jamal, A., & Cullen, K. A. (2021). Notes from the field: E���cigarette use among middle and high school students���National Youth Tobacco Survey, United States, 2021. MMWR. Morbidity and Mortality Weekly Report, 70(39), 1387���1389. 10.15585/mmwr.mm7039a4
  80. Perone, M. (1991). Experimental design in the analysis of free���operant behavior. In I. H. Iversen & K. A. Lattal (Eds.), Experimental analysis of behavior, Parts 1 & 2 (pp. 135���171). Elsevier Science.
  81. Pittenger, S. T., Swalve, N., Chou, S., Smith, M. D., Hoonakker, A. J., Pudiak, C. M., Fleckenstein, A. E., Hanson, G. R., & Bevins, R. A. (2016). Sex differences in neurotensin and substance P following nicotine self���administration in rats. Synapse, 70(8), 336���346. https://doi.org/10.1002/syn.21907
  82. Pogun, S., Yararbas, G., Nesil, T., & Kanit, L. (2017). Sex differences in nicotine preference. Journal of Neuroscience Research, 95(1���2), 148���162. https://doi.org/10.1002/jnr.23858
  83. Qazi, S. U., Ansari, M. H., Ghazanfar, S., Ghazanfar, S. S., & Farooq, M. (2024). Comparison of acute effects of e���cigarettes with and without nicotine and tobacco cigarettes on hemodynamic and endothelial parameters: A systematic review and meta���analysis. High Blood Pressure & Cardiovascular Prevention, 31(3), 225���237. https://doi.org/10.1007/s40292-024-00643-3
  84. Rapp, J. L., Alpert, N., Flores, R. M., & Taioli, E. (2020). Serum cotinine levels and nicotine addiction potential of e���cigarettes: An NHANES analysis. Carcinogenesis, 41(10), 1454���1459. https://doi.org/10.1093/carcin/bgaa015
  85. Reitsma, M. B., Flor, L. S., Mullany, E. C., Gupta, V., Hay, S. I., & Gakidou, E. (2021). Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990���2019. The Lancet Public Health, 6(7), 472���481. https://doi.org/10.1016/S2468-2667(21)00102
  86. Rizzi, G., Lodge, M. E., & Tan, K. R. (2016). Design and construction of a low���cost nose poke system for rodents. MethodsX, 3, 326���332. https://doi.org/10.1016/j.mex.2016.04.002
  87. Rubery, H. (2022, October 20). Why nicotine salts & what devices work best with them. Myvapery. https://www.myvapery.com/blog/post/why-nicotine-salts-and-what-devices-work-best-with-them
  88. Scherer, G., M��tze, J., Pluym, N., & Scherer, M. (2022). Assessment of nicotine delivery and uptake in users of various tobacco/nicotine products. Current Research in Toxicology, 3, Article 100067. https://doi.org/10.1016/j.crtox.2022.100067
  89. Schroeder, M. J., & Hoffman, A. C. (2014). Electronic cigarettes and nicotine clinical pharmacology. Tobacco Control, 23, ii30���ii35. https://doi.org/10.1136/tobaccocontrol-2013-051469
  90. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591���611. https://doi.org/10.1093/biomet/52.3-4.591
  91. Shearston, J. A., Eazor, J., Lee, L., Vilcassim, M. J. R., Reed, T. A., Ort, D., Weitzman, M., & Gordon, T. (2023). Effects of electronic cigarettes and hookah (waterpipe) use on home air quality. Tobacco Control, 32(1), 36���41. https://doi.org/10.1136/tobaccocontrol-2020-056437
  92. Shehata, S. A., Toraih, E. A., Ismail, E. A., Hagras, A. M., Elmorsy, E., & Fawzy, M. S. (2023). Vaping, environmental toxicants exposure, and lung cancer risk. Cancers, 15(18), Article 4525. https://doi.org/10.3390/cancers15184525
  93. Shelton, K. L., & Nicholson, K. L. (2022). Reinforcing effects of fentanyl and sufentanil aerosol puffs in rats. Psychopharmacology, 239(8), 2491���2502. https://doi.org/10.1007/s00213-022-06129-1
  94. Shoaib, M., & Stolerman, I. P. (1995). Conditioned taste aversions in rats after intracerebral administration of nicotine. Behavioural Pharmacology, 6(4), 375���385. https://doi.org/10.1097/00008877-199506000-00008
  95. Shoaib, M., & Stolerman, I. P. (1999). Plasma nicotine and cotinine levels following intravenous nicotine self���administration in rats. Psychopharmacology, 143, 318���321. https://doi.org/10.1007/s002130050
  96. Smith, L. C., Kallupi, M., Tieu, L., Shankar, K., Jaquish, A., Barr, J., Su, Y., Velarde, N., Sedighim, S., Carrette, L. L. G., Klodnicki, M., Sun, X., de Guglielmo, G., & George, O. (2020). Validation of a nicotine aerosol self���administration model in rats with relevance to electronic cigarette use. Neuropsychopharmacology, 45, 1909���1919. https://doi.org/10.1038/s41386-020-0734-8
  97. St. Helen, G., Shahid, M., Chu, S., & Benowitz, N. L. (2018). Impact of e���liquid flavors on e���cigarette vaping behavior. Drug and Alcohol Dependence, 189, 42���48. https://doi.org/10.1016/j.drugalcdep.2018.04.032
  98. Suarez, M., Charntikov, S., Huynh, Y. W., Barrett, S. T., Bevins, R. A., & Wakabayashi, K. T. (2024). A robust and simple catheter connector assembly for long���term self���administration experiments. MethodsX, 12, Article 102675. https://doi.org/10.1016/j.mex.2024.102675
  99. Sullivan, L. M., Weinberg, J., & Keaney, J. F., Jr. (2016). Common statistical pitfalls in basic science research. Journal of the American Heart Association, 5(10), Article e004142. https://doi.org/10.1161/JAHA.116.004142
  100. Swalve, N., Smethells, J. R., & Carroll, M. E. (2016). Sex differences in the acquisition and maintenance of cocaine and nicotine self���administration in rats. Psychopharmacology, 233(6), 1005���1013. https://doi.org/10.1007/s00213-015-4183-8
  101. Tashakkori, N. A., Park���Lee, E., Roh, E. J., & Christensen, C. H. (2023). Multiple tobacco product use among youth e���cigarette users: National youth tobacco survey, 2020. Journal of Adolescent Health, 73(4), 769���775. https://doi.org/10.1016/j.jadohealth.2023.05.025
  102. U.S. Department of Health and Human Services. (2014). The health consequences of smoking���50���years of progress: A report of the surgeon general. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. https://www.surgeongeneral.gov/library/reports/50-years-of-progress/full-report.pdf
  103. U.S. Department of Health and Human Services. (2016). E���Cigarette use among youth and young adults: A report of the surgeon general ��� Executive summary. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. https://www.cdc.gov/tobacco/data_statistics/sgr/e-cigarettes/pdfs/2016_sgr_entire_report_508.pdf
  104. United States Environmental Protection Agency. (2024, December 17). National ambient air quality standards (NAAQS) for PM. https://www.epa.gov/pm���pollution/national���ambient���air���quality���standards���naaqs���pm#rule���summary
  105. Van Herck, H., Baumans, V., Brandt, C. J. W. M., Boere, H. A. G., Hesp, A. P. M., Van Lith, H. A., Schurink, M., & Beynen, A. C. (2001). Blood sampling from the retro���orbital plexus, the saphenous vein and the tail vein in rats: comparative effects on selected behavioural and blood variables. Laboratory animals, 35(2), 131���139. https://doi.org/10.1258/002367701191149
  106. Vu, G. T., Stjepanovi��, D., Sun, T., Leung, J., Chung, J., Connor, J., Thai, P. K., Gartner, C. E., Tran, B. X., Hall, W. D., & Chan, G. (2024). Predicting the long���term effects of electronic cigarette use on population health: A systematic review of modelling studies. Tobacco Control, 33(6), 790���797. https://doi.org/10.1136/tc-2022-057748
  107. Wang, T. W. (2020). E���cigarette use among middle and high school students���United States, 2020. MMWR. Morbidity and Mortality Weekly Report, 69(37), 1310���1312. 10.15585/mmwr.mm6937e1
  108. Wilkinson, J. L., & Bevins, R. A. (2008). Intravenous nicotine conditions a place preference in rats using an unbiased design. Pharmacology Biochemistry and Behavior, 88(3), 256���264. https://doi.org/10.1016/j.pbb.2007.08.009
  109. Yuan, M., Cross, S. J., Loughlin, S. E., & Leslie, F. M. (2015). Nicotine and the adolescent brain. Journal of Physiology, 593(16), 3397���3412. https://doi.org/10.1113/JP270492
  110. Zare, S., Nemati, M., & Zheng, Y. (2018). A systematic review of consumer preference for e���cigarette attributes: Flavor, nicotine strength, and type. PloS one, 13(3), Article e0194145. https://doi.org/10.1371/journal.pone.0194145
  111. Zhang, X., Sun, Y., Cheung, Y. T. D., Wang, M. P., Wu, Y. S., Chak, K. Y., Chen, J., Leung, L. T., Lam, T. H., & Ho, S. Y. (2024). Cigarettes, heated tobacco products and dual use: Exhaled carbon monoxide, saliva cotinine and total tobacco consumed by Hong Kong tobacco users. Tobacco Control, 33(4), 457���463. https://doi.org/10.1136/tc-2022-057598

Grants

  1. RD21 DA053818/NIDA NIH HHS
  2. /Utah State University
  3. RD21 DA053818/NIDA NIH HHS

MeSH Term

Animals
Electronic Nicotine Delivery Systems
Rats
Nicotine
Aerosols
Male
Self Administration
Administration, Inhalation
Rats, Sprague-Dawley
Vaping
Cotinine
Substance Withdrawal Syndrome

Chemicals

Nicotine
Aerosols
Cotinine

Word Cloud

Created with Highcharts 10.0.0nicotineaerosolRENDSpreclinicaluseelectronicdeliveryself-administrationalsoe-cigarettesmodelscanrodentnose-onlymodelratsTobaccoleadingcausedeathgloballyUnitedStatesdecadesdeclinedrivendecreasescombustedtobaccoproductincreasedduesystemsknownvapesPreclinicalserveimportantlodestarssearcheffectiveinterventionpreventiontacticsCurrentvariantssubstantiallimitationshoweverThereforecreatedsystemnovellow-costnonproprietaryconfirmedsequestersnoseportmeasuringfineparticulatematterPM���<25micronsgeneratedshowedrobustlyself-administerflavoredresultinghighbloodlevelscotininemajormetabolitespontaneoussomaticwithdrawalsymptomsThusprovidevalidationoperationfunctionopeningdooropen-sourcerelativelylowcostFourexistingoperantchambersretrofittedless$325/chamberdiagramsplanscustom-designedcomponentsOpenScienceFrameworkhttps://osfio/x2pqf/?view_only=775b55435b8e428f98e6da384ef7889dsystem:Apparatusvoluntarye-cigaretteinhalationnose���onlyself���administrationvaping

Similar Articles

Cited By

No available data.