The effect of SGLT2 inhibitors on hepatic steatosis detected by MRI-PDFF in patients with type 2 Diabetes mellitus and metabolic-associated steatotic liver disease.

Mona Ahmed Amin, Noha Adly Sadik, Hala Ahmed Saad, Mohammed Fawzy, Hend Abdallah Elsheimy
Author Information
  1. Mona Ahmed Amin: Faculty of Medicine, Internal Medicine Department, Hepatology and Gastroenterology, Endocrinology and Diabetes Division, Cairo University, Cairo, Egypt.
  2. Noha Adly Sadik: Faculty of Medicine, Internal Medicine Department, Hepatology and Gastroenterology, Endocrinology and Diabetes Division, Cairo University, Cairo, Egypt. Noha_adly@kasralainy.edu.eg. ORCID
  3. Hala Ahmed Saad: Faculty of Medicine, Internal Medicine Department, Hepatology and Gastroenterology, Endocrinology and Diabetes Division, Cairo University, Cairo, Egypt.
  4. Mohammed Fawzy: Department of Diagnostic Radiology, National Hepatology and Tropical Research Institute, Cairo, Egypt.
  5. Hend Abdallah Elsheimy: Faculty of Medicine, Internal Medicine Department, Hepatology and Gastroenterology, Endocrinology and Diabetes Division, Cairo University, Cairo, Egypt.

Abstract

Sodium-glucose co-transporter type-2 (SGLT2) inhibitors have been identified to have a crucial hepatoprotective role in patients with type 2 diabetes (T2DM) and metabolic-associated steatotic liver disease (MASLD). Thus, we aimed to assess the effect of SGLT2 inhibitors on hepatic steatosis in patients with T2DM and MASLD added to the standard of care (SOC) treatment. Our study was a single-arm clinical trial with trial no ISRCTN85961860. Thirty T2DM patients with MASLD were recruited from the outpatient endocrinology and diabetes clinic of the Internal Medicine Department at Kasr Al-Aini Hospital, Cairo University, Egypt. Our Patients received Empagliflozin 10 mg daily which was added to SOC treatment and followed up for 24 weeks. Magnetic resonance imaging proton density fat fraction (MRI-PDFF) was done at baseline and after 24 weeks to assess the percentage change in hepatic fat mass. Also changes in Fib-4 and NAFLD fibrosis scores were calculated. Our study showed a statistically significant decrease in the mean MRI-PDFF measurement of hepatic steatosis after 24 weeks of adding empagliflozin to SOC treatment (13.297��������7.15) compared to the mean at baseline (15.288��������8.72), P���=���0.006 with overall percentage decrease about 13.16% of liver steatosis. There were significant decreases in BMI, fasting blood glucose, and Alanine transaminase, (P���<���0.001, 0.03, 0.01) respectively. There were no significant differences in Fib-4 or NAFLD fibrosis scores. Adding empagliflozin 10 mg to the standard treatment in patients with diabetes and MASLD could reduce hepatic fat mass significantly after 24 weeks of treatment. Thus, adding SGLT2 inhibitors to the clinical practice guidelines could be a therapeutic agent for patients with MASLD and T2DM.

Keywords

References

  1. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO) (2024) EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 17(4):374���444. https://doi.org/10.1159/000539371 . Erratum in: Obes Facts. 16:1. https://doi.org/10.1159/000541386
  2. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A, Nader F (2019) The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol 71(4):793���801. https://doi.org/10.1016/j.jhep.2019.06.021 [DOI: 10.1016/j.jhep.2019.06.021]
  3. Miyake T, Matsuura B, Furukawa S, Ishihara T, Yoshida O, Miyazaki M, Watanebe K, Shiomi A, Nakaguchi H, Yamamoto Y, Koizumi Y, Tokumoto Y, Hirooka M, Takeshita E, Kumagi T, Abe M, Ikeda Y, Iwata T, Hiasa Y (2022) Fatty liver with metabolic disorder, such as metabolic dysfunction-associated fatty liver disease, indicates high risk for developing diabetes mellitus. J Diabetes Investig 13(7):1245���1252. https://doi.org/10.1111/jdi.13772 [DOI: 10.1111/jdi.13772]
  4. Bessho R, Kashiwagi K, Ikura A, Yamataka K, Inaishi J, Takaishi H, Kanai T (2022) A significant risk of metabolic dysfunction-associated fatty liver disease plus diabetes on subclinical atherosclerosis. PLoS One 17(5):e0269265. https://doi.org/10.1371/journal.pone.0269265 [DOI: 10.1371/journal.pone.0269265]
  5. Liang Y, Chen H, Liu Y, Hou X, Wei L, Bao Y, Yang C, Zong G, Wu J, Jia W (2022) Association of MAFLD with diabetes, chronic kidney disease, and cardiovascular disease: A 4.6-Year Cohort Study in China. J Clin Endocrinol Metab. 107(1):88���97. https://doi.org/10.1210/clinem/dgab641 [DOI: 10.1210/clinem/dgab641]
  6. Shin NR, Bose S, Wang JH, Ansari A, Lim SK, Chin YW, Choi HS, Kim H (2017) Flos Lonicera combined with metformin ameliorates hepatosteatosis and glucose intolerance in association with gut microbiota modulation. Front Microbiol 8:2271. https://doi.org/10.3389/fmicb.2017.02271 [DOI: 10.3389/fmicb.2017.02271]
  7. Colosimo S, Ravaioli F, Petroni ML, Brodosi L, Marchignoli F, Barbanti FA, Sasdelli AS, Marchesini G, Pironi L (2021) Effects of antidiabetic agents on steatosis and fibrosis biomarkers in type 2 diabetes: a real-world data analysis. Liver Int 41(4):731���742. https://doi.org/10.1111/liv.14799 [DOI: 10.1111/liv.14799]
  8. - Tahrani AA, Barnett AH, Bailey CJ (2013) SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 1(2):140���51. https://doi.org/10.1016/S2213-8587(13)70050-0 . Erratum in: Lancet Diabetes Endocrinol. 2015;3(4):e3
  9. Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y (2022) Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell 13(5):336���359. https://doi.org/10.1007/s13238-020-00809-4 [DOI: 10.1007/s13238-020-00809-4]
  10. Packer Milton (2022) Critical reanalysis of the mechanisms underlying the Cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 146:1383���1405. https://doi.org/10.1161/CIRCULATIONAHA.122.061732 [DOI: 10.1161/CIRCULATIONAHA.122.061732]
  11. Kinoshita T, Shimoda M, Nakashima K, Fushimi Y, Hirata Y, Tanabe A, Tatsumi F, Hirukawa H, Sanada J, Kohara K, Irie S, Kimura T, Nakamura Y, Nishioka M, Obata A, Nakanishi S, Mune T, Kaku K, Kaneto H (2020) Comparison of the effects of three kinds of glucose-lowering drugs on non-alcoholic fatty liver disease in patients with type 2 diabetes: a randomized, open-label, three-arm, active control study. J Diabetes Investig. 11(6):1612���1622. https://doi.org/10.1111/jdi.13279 [DOI: 10.1111/jdi.13279]
  12. Wei Q, Xu X, Guo L, Li J, Li L (2021) Effect of SGLT2 inhibitors on type 2 diabetes mellitus with non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Front Endocrinol. https://doi.org/10.3389/fendo.2021.635556 [DOI: 10.3389/fendo.2021.635556]
  13. Han E, Lee YH, Lee BW, Kang ES, Cha BS (2020) Ipragliflozin additively ameliorates non-alcoholic fatty liver disease in patients with Type 2 Diabetes controlled with metformin and pioglitazone: A 24-week randomized controlled trial. J Clin Med 9(1):259. https://doi.org/10.3390/jcm9010259 [DOI: 10.3390/jcm9010259]
  14. Wang D, Luo Y, Wang X, Orlicky DJ, Myakala K, Yang P, Levi M (2018) The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents renal and liver disease in Western diet induced obesity mice. Int J Mol Sci 19(1):137. https://doi.org/10.3390/ijms19010137 [DOI: 10.3390/ijms19010137]
  15. Jojima T, Tomotsune T, Iijima T, Akimoto K, Suzuki K, Aso Y (2016) Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetol Metab Syndr 8:45. https://doi.org/10.1186/s13098-016-0169-x [DOI: 10.1186/s13098-016-0169-x]
  16. Shima H, Miki T, Kuno A, Mizuno M, Sato T, Tanno M, Yano T, Nakata K, Kimura Y, Abe K, Ohwada W, Miura T (2019) Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. J Pharmacol Exp Ther 368(3):524���534. https://doi.org/10.1124/jpet.118.253666 [DOI: 10.1124/jpet.118.253666]
  17. Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z (2022) American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the American association for the study of liver diseases (AASLD). Endocr Pract 28(5):528���562 [DOI: 10.1016/j.eprac.2022.03.010]
  18. Tokushige K, Ikejima K, Ono M, Eguchi Y, Kamada Y, Itoh Y et al (2021) Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. Hepatol Res. 51:1013���25 [DOI: 10.1111/hepr.13688]
  19. Mohammad SH, Fadhil NN, Mahmood MD (2018) Effects of metformin and dapagliflozin on glycemic indices and HOMA-IR in type 2 diabetes mellitus patients. Int J Pharm Bio Sci 8:66���73
  20. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, Sulkowski MS, Torriani FJ, Dieterich DT, Thomas DL, Messinger D, Nelson M, APRICOT Clinical Investigators (2006) Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 43(6):1317���1325. https://doi.org/10.1002/hep.21178 [DOI: 10.1002/hep.21178]
  21. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, Enders F, Saksena S, Burt AD, Bida JP, Lindor K, Sanderson SO, Lenzi M, Adams LA, Kench J, Therneau TM, Day CP (2007) The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45(4):846���854. https://doi.org/10.1002/hep.21496 [DOI: 10.1002/hep.21496]
  22. Starekova J, Hernando D, Pickhardt PJ, Reeder SB (2021) Quantification of liver fat content with CT and MRI: state of the art. Radiology. 301(2):250���262. https://doi.org/10.1148/radiol.2021204288 [DOI: 10.1148/radiol.2021204288]
  23. Brunner KT, Henneberg CJ, Wilechansky RM, Long MT (2019) Nonalcoholic fatty liver disease and obesity treatment. Curr Obes Rep 8(3):220���228. https://doi.org/10.1007/s13679-019-00345-1 [DOI: 10.1007/s13679-019-00345-1]
  24. Patel NS, Doycheva I, Peterson MR, Hooker J, Kisselva T, Schnabl B, Seki E, Sirlin CB, Loomba R (2015) Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 13(3):561-568.e1. https://doi.org/10.1016/j.cgh.2014.08.039 [DOI: 10.1016/j.cgh.2014.08.039]
  25. Ciardullo Stefano, Muraca Emanuele, Vergani Michela, Invernizzi Pietro, Perseghin Gianluca (2024) Advancements in pharmacological treatment of NAFLD/MASLD: a focus on metabolic and liver-targeted interventions. Gastroenterol Rep. https://doi.org/10.1093/gastro/goae029 [DOI: 10.1093/gastro/goae029]
  26. Sinha B, Datta D, Ghosal S (2020) Meta-analysis of the effects of sodium glucose cotransporter 2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes. JGH Open 5(2):219���227. https://doi.org/10.1002/jgh3.12473 [DOI: 10.1002/jgh3.12473]
  27. Gameil MA, Abdelgawad MS, Bahgat MH, Elsebaie AH, Marzouk RE (2020) Influence of sodium glucose co-transporter 2 inhibitors on fatty liver index parameters in type 2 diabetes mellitus. Egypt J Intern Med 32:1���9. https://doi.org/10.1186/s43162-020-00013-0 [DOI: 10.1186/s43162-020-00013-0]
  28. Arase Y, Shiraishi K, Anzai K, Sato H, Teramura E, Tsuruya K, Hirose S, Deguchi R, Toyoda M, Mine T, Kagawa T (2019) Effect of sodium glucose Co-transporter 2 inhibitors on liver fat mass and body composition in patients with nonalcoholic fatty liver disease and Type 2 Diabetes mellitus. Clin Drug Investig 39(7):631���641. https://doi.org/10.1007/s40261-019-00785-6 [DOI: 10.1007/s40261-019-00785-6]
  29. Sumida Y, Murotani K, Saito M, Tamasawa A, Osonoi Y, Yoneda M (2019) Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: a prospective, single-arm trial (LEAD trial). Hepatol Res 49:64���71. https://doi.org/10.1111/hepr.132 [DOI: 10.1111/hepr.132]
  30. Seko Y, Sumida Y, Tanaka S, Mori K, Taketani H, Ishiba H, Hara T, Okajima A, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Kanemasa K, Yasui K, Imai S, Shimada K, Itoh Y (2017) Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res 47(10):1072���1078. https://doi.org/10.1111/hepr.12834 [DOI: 10.1111/hepr.12834]
  31. Tobita H, Sato S, Miyake T, Ishihara S, Kinoshita Y (2017) Effects of dapagliflozin on body composition and liver tests in patients with nonalcoholic steatohepatitis associated with Type 2 Diabetes mellitus: a prospective, open-label, uncontrolled study. Curr Ther Res Clin Exp 8(87):13���19. https://doi.org/10.1016/j.curtheres.2017.07.002 [DOI: 10.1016/j.curtheres.2017.07.002]
  32. Pradhan R, Yin H, Yu O, Azoulay L (2022) Glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors and risk of nonalcoholic fatty liver disease among patients with Type 2 Diabetes. Diabetes Care 45(4):819���829. https://doi.org/10.2337/dc21-1953 [DOI: 10.2337/dc21-1953]
  33. Bica IC, Stoica RA, Salmen T, Jane�� A, Vol��an��ek ��, Popovic D, Muzurovic E, Rizzo M, Stoian AP (2023) The effects of sodium-glucose cotransporter 2-inhibitors on steatosis and fibrosis in patients with non-alcoholic fatty liver disease or steatohepatitis and Type 2 diabetes: a systematic review of randomized controlled trials. Medicina (Kaunas) 59(6):1136. https://doi.org/10.3390/medicina59061136 [DOI: 10.3390/medicina59061136]
  34. Kuchay MS, Krishan S, Mishra SK, Farooqui KJ, Singh MK, Wasir JS, Bansal B, Kaur P, Jevalikar G, Gill HK, Choudhary NS, Mithal A (2018) Effect of empagliflozin on liver fat in patients with Type 2 Diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT Trial). Diabetes Care 41(8):1801���1808. https://doi.org/10.2337/dc18-0165 [DOI: 10.2337/dc18-0165]
  35. Gaborit B, Ancel P, Abdullah AE et al (2021) Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol 20:57. https://doi.org/10.1186/s12933-021-01237-2 [DOI: 10.1186/s12933-021-01237-2]
  36. Chehrehgosha H, Sohrabi MR, Ismail-Beigi F et al (2021) Empagliflozin improves liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease and Type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trail. Diabetes Ther 12:843���861. https://doi.org/10.1007/s13300-021-01011-3 [DOI: 10.1007/s13300-021-01011-3]
  37. Raj H, Durgia H, Palui R, Kamalanathan S, Selvarajan S, Kar SS, Sahoo J (2019) SGLT-2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: a systematic review. World J Diabetes 10(2):114���132. https://doi.org/10.4239/wjd.v10.i2.114 [DOI: 10.4239/wjd.v10.i2.114]
  38. Shibuya T, Fushimi N, Kawai M, Yoshida Y, Hachiya H, Ito S, Kawai H, Ohashi N, Mori A (2018) Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: a prospective randomized controlled pilot study. Diabetes Obes Metab 20(2):438���442. https://doi.org/10.1111/dom.13061 [DOI: 10.1111/dom.13061]
  39. Lian J, Fu J (2021) Pioglitazone for NAFLD patients with prediabetes or Type 2 Diabetes mellitus: a meta-analysis. Front Endocrinol (Lausanne). 28;12:615409. https://doi.org/10.3389/fendo.2021.615409 . Erratum in: Front Endocrinol (Lausanne). 2022;13:840299
  40. Bellanti F, Lo Buglio A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Aich P, Singh SP, Serviddio G, Vendemiale G (2022) Impact of sodium glucose cotransporter-2 inhibitors on liver steatosis/fibrosis/inflammation and redox balance in non-alcoholic fatty liver disease. World J Gastroenterol 28(26):3243���3257. https://doi.org/10.3748/wjg.v28.i26.3243 [DOI: 10.3748/wjg.v28.i26.3243]
  41. - Kahl S, Gancheva S, Stra��burger K, Herder C, Machann J, Katsuyama H, Kabisch S, Henkel E, Kopf S, Lagerpusch M, Kantartzis K, Kupriyanova Y, Markgraf D, van Gemert T, Knebel B, Wolkersdorfer MF, Kuss O, Hwang JH, Bornstein SR, Kasperk C, Stefan N, Pfeiffer A, Birkenfeld AL, Roden M (2020) Empagliflozin effectively lowers liver fat content in well-controlled Type 2 diabetes: a randomized, double-Blind, Phase 4, Placebo-Controlled Trial. Diabetes Care 43(2):298���305. https://doi.org/10.2337/dc19-0641 2019;368(3):524���534. https://doi.org/10.1124/jpet.118.253666
  42. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z et al (2017) Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65:1557���1565. https://doi.org/10.1002/hep.29085 [DOI: 10.1002/hep.29085]
  43. Akuta N, Kawamura Y, Watanabe C, Nishimura A, Okubo M, Mori Y et al (2018) Impact of SGLT2 inhibitor to histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. Hepatol Res. https://doi.org/10.1111/hepr.13304 [DOI: 10.1111/hepr.13304]
  44. Arai T, Atsukawa M, Tsubota A, Mikami S, Haruki U, Yoshikata K, Ono H, Kawano T, Yoshida Y, Tanabe T, Okubo T, Hayama K, Nakagawa-Iwashita A, Itokawa N, Kondo C, Kaneko K, Nagao M, Inagaki K, Fukuda I, Sugihara H, Iwakiri K (2022) Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol Commun. 6(11):3073���3082. https://doi.org/10.1002/hep4.2069 [DOI: 10.1002/hep4.2069]
  45. Androutsakos T, Nasiri-Ansari N, Bakasis AD, Kyrou I, Efstathopoulos E, Randeva HS, Kassi E (2022) SGLT-2 Inhibitors in NAFLD: expanding their role beyond diabetes and cardioprotection. Int J Mol Sci 23(6):3107. https://doi.org/10.3390/ijms23063107 [DOI: 10.3390/ijms23063107]
  46. Hayashi T, Fukui T, Nakanishi N, Yamamoto S, Tomoyasu M, Osamura A, Ohara M, Yamamoto T, Ito Y, Hirano T (2017) Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin. Cardiovasc Diabetol. https://doi.org/10.1186/s12933-016-0491-5 [DOI: 10.1186/s12933-016-0491-5]
  47. Szekeres Z, Toth K, Szabados E (2021) The effects of SGLT2 inhibitors on lipid metabolism. Metabolites 11(2):87. https://doi.org/10.3390/metabo11020087 [DOI: 10.3390/metabo11020087]
  48. Katsimardou A, Theofilis P, Vordoni A, Doumas M, Kalaitzidis RG (2024) The effects of SGLT2 inhibitors on blood pressure and other cardiometabolic risk factors. Int J Mol Sci 25:12384. https://doi.org/10.3390/ijms252212384 [DOI: 10.3390/ijms252212384]
  49. Li M, Yi T, Fan F, Qiu L, Wang Z, Weng H, Ma W, Zhang Y, Huo Y (2022) Effect of sodium-glucose cotransporter-2 inhibitors on blood pressure in patients with heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol 21(1):139. https://doi.org/10.1186/s12933-022-01574-w [DOI: 10.1186/s12933-022-01574-w]
  50. Teo YH, Teo YN, Syn NL, Kow CS, Yoong CSY, Tan BYQ, Yeo T, Lee C, Lin W, Sia C (2021) Effects of sodium/glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular and metabolic outcomes in patients without diabetes mellitus: a systematic review and meta-analysis of randomized-controlled trials. J. Am. Heart Assoc. 10:e019463 [DOI: 10.1161/JAHA.120.019463]

Word Cloud

Created with Highcharts 10.0.0patientsMASLDSGLT2inhibitorshepatictreatmentdiabetesT2DMsteatosis24 weeksMRI-PDFF2liverSOCfatsignificanttypemetabolic-associatedsteatoticdiseaseThusassesseffectaddedstandardstudyclinicaltrial10 mgbaselinepercentagemassFib-4NAFLDfibrosisscoresdecreasemeanaddingempagliflozin13150Sodium-glucoseco-transportertype-2identifiedcrucialhepatoprotectiveroleaimedcaresingle-armISRCTN85961860ThirtyrecruitedoutpatientendocrinologyclinicInternalMedicineDepartmentKasrAl-AiniHospitalCairoUniversityEgyptPatientsreceivedEmpagliflozindailyfollowedMagneticresonanceimagingprotondensityfractiondonechangeAlsochangescalculatedshowedstatisticallymeasurement297��������7compared288��������872P���=���0006overall16%decreasesBMIfastingbloodglucoseAlaninetransaminaseP���<���00010301respectivelydifferencesAddingreducesignificantlypracticeguidelinestherapeuticagentdetectedDiabetesmellitusType

Similar Articles

Cited By

No available data.