Instar determination, development, and sexual dimorphism for Gynaephora menyuanensis (Lepidoptera: Lymantriinae) and ultrastructure of adult antennae.

Hainan Shao, Chen Yuan, Yunxiang Liu, Xin Xin
Author Information
  1. Hainan Shao: State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China. ORCID
  2. Chen Yuan: State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
  3. Yunxiang Liu: State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
  4. Xin Xin: Department of Crop Soil Sciences, Washington State University, Pullman, WA, USA.

Abstract

Gynaephora menyuanensis Yan & Zhou is one of the most devastating pests that harm the ecosystem of alpine meadows and hinder the advancement of animal husbandry. However, the current knowledge of the morphology of the different developmental stages within G. menyuanensis reveals an information deficit that needs to be addressed. This study is the first to report the life history, sexual dimorphism, and morphology of eggs, mature larvae, pupae, and adult antennal sensilla types of G. menyuanensis. This study used a K-means clustering method, based on the head width, body length, body width, and the number of crochets of larvae at each instar, to differentiate instars of G. menyuanensis; the description of the morphology of larvae, pupae, and adult antennae employed light microscopy and scanning electron microscopy photographs. The results revealed that the instar grouping was reliable and verified by the Brooks-Dyar combined with Crosby rules, revealing that the larval stage of G. menyuanensis comprises 7 instars. This species produces one generation per year in the alpine meadow, with its life cycle lasting approximately 300 d in total. The pupae and adult antennae significantly differed between the sexes, indicating sexual dimorphism in the 2 genders. Nine types and 14 subtypes of antennal sensilla were observed in male antennae (bipectinate), while only 3 types and 3 subtypes were found in female adult antennae (club-like). Our findings have implications for better understanding the life history, adaptation strategies under extreme environmental conditions on the Qinghai-Tibet Plateau and developing scientific and effective pest control methods.

Keywords

References

  1. Microsc Res Tech. 2024 Dec;87(12):2989-3002 [PMID: 39101561]
  2. Microsc Res Tech. 2023 Apr;86(4):452-464 [PMID: 36582180]
  3. Micron. 2017 May;96:16-28 [PMID: 28214751]
  4. Arthropod Struct Dev. 2009 May;38(3):195-205 [PMID: 19095080]
  5. Microsc Res Tech. 2016 Nov;79(11):1069-1081 [PMID: 27535782]
  6. PLoS One. 2015 Jun 08;10(6):e0127257 [PMID: 26053874]
  7. Micron. 2014 May;60:29-38 [PMID: 24602269]
  8. Insect Sci. 2024 Dec;31(6):1721-1742 [PMID: 38485691]
  9. J Insect Sci. 2019 Sep 1;19(5): [PMID: 31587065]
  10. Arthropod Struct Dev. 2000 Apr;29(2):121-8 [PMID: 18088920]
  11. Biol Lett. 2021 Sep;17(9):20210251 [PMID: 34520680]
  12. Arthropod Struct Dev. 2022 Mar;67:101144 [PMID: 35255307]
  13. J Insect Sci. 2020 Mar 1;20(2): [PMID: 32191795]
  14. J Med Entomol. 2024 May 13;61(3):719-725 [PMID: 38521610]
  15. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Nov;206(6):939-950 [PMID: 33098446]
  16. Gene. 2017 Apr 30;610:148-155 [PMID: 28188868]
  17. Microsc Res Tech. 2022 Apr;85(4):1371-1391 [PMID: 34843138]
  18. Environ Entomol. 2022 Oct 21;51(5):940-947 [PMID: 36066442]
  19. Insects. 2022 Sep 01;13(9): [PMID: 36135498]
  20. Microsc Res Tech. 2019 Oct;82(10):1632-1641 [PMID: 31268209]
  21. Micron. 2021 Jan;140:102957 [PMID: 33120164]
  22. J Econ Entomol. 2013 Apr;106(2):800-6 [PMID: 23786067]
  23. J Econ Entomol. 2007 Jun;100(3):627-45 [PMID: 17598520]
  24. J Forensic Sci. 2024 May;69(3):1088-1093 [PMID: 38321965]
  25. J Insect Physiol. 2005 Oct;51(10):1066-74 [PMID: 15964591]
  26. J Insect Sci. 2015 Sep 10;15:124 [PMID: 26363060]
  27. Micron. 2019 Aug;123:102682 [PMID: 31153011]
  28. Microsc Res Tech. 2024 May;87(5):933-947 [PMID: 38169076]
  29. J Exp Biol. 2012 Sep 1;215(Pt 17):3096-105 [PMID: 22660776]
  30. Microsc Res Tech. 2019 Nov;82(11):1903-1910 [PMID: 31418963]
  31. J Insect Sci. 2015 Nov 06;15: [PMID: 26546689]
  32. J Med Entomol. 2018 Jun 28;55(4):808-816 [PMID: 29474578]
  33. Insect Sci. 2017 Aug;24(4):543-558 [PMID: 26573759]
  34. Sci Rep. 2024 Jan 12;14(1):1227 [PMID: 38216588]

MeSH Term

Animals
Female
Male
Larva
Pupa
Sex Characteristics
Moths
Arthropod Antennae
Sensilla
Microscopy, Electron, Scanning
Ovum

Word Cloud

Created with Highcharts 10.0.0menyuanensisadultantennaemorphologyGlifehistorysexualdimorphismlarvaepupaeantennalsensillatypesGynaephoraonealpinestudywidthbodyinstarinstarsmicroscopysubtypes3Qinghai-TibetPlateauYan&ZhoudevastatingpestsharmecosystemmeadowshinderadvancementanimalhusbandryHowevercurrentknowledgedifferentdevelopmentalstageswithinrevealsinformationdeficitneedsaddressedfirstreporteggsmatureusedK-meansclusteringmethodbasedheadlengthnumbercrochetsdifferentiatedescriptionemployedlightscanningelectronphotographsresultsrevealedgroupingreliableverifiedBrooks-DyarcombinedCrosbyrulesrevealinglarvalstagecomprises7speciesproducesgenerationperyearmeadowcyclelastingapproximately300dtotalsignificantlydifferedsexesindicating2gendersNine14observedmalebipectinatefoundfemaleclub-likefindingsimplicationsbetterunderstandingadaptationstrategiesextremeenvironmentalconditionsdevelopingscientificeffectivepestcontrolmethodsInstardeterminationdevelopmentLepidoptera:Lymantriinaeultrastructuregrasslandcaterpillar

Similar Articles

Cited By