A robotic treatment delivery system to facilitate dynamic conformal synchrotron radiotherapy.

Micah J Barnes, Nader Afshar, Taran Batty, Tom Fiala, Matthew Cameron, Daniel Hausermann, Nicholas Hardcastle, Michael Lerch
Author Information
  1. Micah J Barnes: Centre of Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
  2. Nader Afshar: ANSTO Australian Synchrotron, Clayton, Australia.
  3. Taran Batty: ANSTO Australian Synchrotron, Clayton, Australia.
  4. Tom Fiala: ANSTO Australian Synchrotron, Clayton, Australia.
  5. Matthew Cameron: ANSTO Australian Synchrotron, Clayton, Australia.
  6. Daniel Hausermann: ANSTO Australian Synchrotron, Clayton, Australia.
  7. Nicholas Hardcastle: Centre of Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
  8. Michael Lerch: Centre of Medical Radiation Physics, University of Wollongong, Wollongong, Australia.

Abstract

BACKGROUND: In clinical radiotherapy, the patient remains static during treatment and only the source is dynamically manipulated. In synchrotron radiotherapy, the beam is fixed, and is horizontally wide and vertically small, requiring the patient to be moved through the beam to ensure full target coverage, while shaping the field to conform to the target. No clinical system exists that performs both dynamic motion of the patient and dynamic shaping of the beam.
PURPOSE: We developed and tested a new dynamic treatment delivery system capable of delivering conformal fields with a robotic patient positioning system for use on the Imaging and Medical Beamline (IMBL) at the Australian Nuclear Science and Technology Organisation, Australian Synchrotron.
METHODS: An industrial robotic manipulator was modified to enable dynamic radiotherapy treatments on IMBL. The robot, combined with a carbon-fiber treatment couch-top and a recently developed dynamic collimator, formed the basis of the new treatment delivery system. To synchronize the motions of the robot and collimator, a real-time, hardware-based event-handling system was utilized. To test the system, a ball bearing in a medical physics phantom was treated with circular fields ranging from 5 to 40 mm in diameter and at treatment speeds from 2 to 50 mm  . The position of the ball bearing was compared to the center of the circular fields and the positional and temporal accuracy of the treatment delivery system was assessed, and appropriate treatment margins for the system were determined.
RESULTS: The vertical position of the ball bearing varied with treatment delivery speed ( ) while the horizontal position remained consistent ( ). The time-delay between the robot and the collimator remained consistent ( ) at treatment speeds above . Data at was right at the edge of both the robot capabilities and the analysis technique, and had larger variations in timing ( ). Horizontal margins of and vertical margins of up to were calculated for the treatment delivery system.
CONCLUSIONS: We have implemented the first robotic treatment delivery system for synchrotron radiotherapy treatments. The largest errors were observed in the direction of motion of the patient through the beam and with future improvements, can be reduced. The system was both accurate and repeatable and is ready to support future treatments on IMBL.

Keywords

References

  1. Fernandez���Palomo C, Fazzari J, Trappetti V, et al. Animal models in microbeam radiation therapy: a scoping review. Cancers. 2020;12(3):1���26. doi:10.3390/cancers12030527
  2. Smyth LM, Day LR, Woodford K, Rogers PA, Crosbie JC, Senthi S. Identifying optimal clinical scenarios for synchrotron microbeam radiation therapy: a treatment planning study. Physica Med. 2019;60:111���119. doi:10.1016/j.ejmp.2019.03.019
  3. Fernandez���Palomo C, Nikitaki Z, Djonov V, Georgakilas AG, Martin OA. Non���targeted effects of synchrotron radiation: lessons from experiments at the australian and european synchrotrons. Appl Sci. 2022;12(4):2079. doi:10.3390/app12042079
  4. Engels E, Lerch M, Tehei M, et al. Synchrotron activation radiotherapy: effects of dose���rate and energy spectra to tantalum oxide nanoparticles selective tumour cell radiosentization enhancement. J Phys Conf Ser. 2017;777(1):012011. doi:10.1088/1742���6596/777/1/012011
  5. Bouchet A, Lemasson B, Le Duc G, et al. Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys. 2010;78(5):1503���1512. doi:10.1016/j.ijrobp.2010.06.021
  6. Schneider T, Fernandez���Palomo C, Bertho A, et al. Combining FLASH and spatially fractionated radiation therapy: the best of both worlds. Radiother Oncol. 2022;175:169���177. doi:10.1016/j.radonc.2022.08.004
  7. Livingstone J, Adam JF, Crosbie JC, et al. Preclinical radiotherapy at the australian synchrotron's imaging and medical beamline: instrumentation, dosimetry and a small���animal feasibility study. J Synchrotron Radiat. 2017;24(4):854���865. doi:10.1107/S1600577517006233
  8. Bartzsch S, Corde S, Crosbie JC, et al. Technical advances in X���ray microbeam radiation therapy. Phys Med Biol. 2020;65(2):02TR01. doi:10.1088/1361���6560/ab5507
  9. Barnes MJ, Afshar N, Cameron M, Hausermann D, Hardcastle N, Lerch M. The design and characterization of a novel dynamic collimator system for synchrotron radiotherapy applications. Med Phys. 2023;50(9):5806���5816. doi:10.1002/mp.16664
  10. Barnes MJ, Paino J, Day LR, et al. SyncMRT$SyncMRT$: A solution to image���guided synchrotron radiotherapy for quality assurance and pre���clinical trials. J Synchrotron Radiat. 2022;29(4):1074���1084. doi:10.1107/S1600577522004829
  11. Devicienti S, Strigari L, D'Andrea M, Benassi M, Dimiccoli V, Portaluri M. Patient positioning in the proton radiotherapy era. J Exp Clin Cancer Res. 2010;29(1):47. doi:10.1186/1756���9966���29���47
  12. Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR. The CyberKnife�� robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010;9(5):433���452. doi:10.1177/153303461000900502
  13. Kilby W, Naylor M, Dooley JR, Maurer CR, Sayeh S. 2 ��� A Technical overview of the cyberknife system. In: Abedin���Nasab MH, ed. Handbook of Robotic and Image���Guided Surgery. Elsevier; 2020:15���38
  14. Balog J, Holmes T, Vaden R. Helical tomotherapy dynamic quality assurance. Med Phys. 2006;33(10):3939���3950. doi:10.1118/1.2351952
  15. Chen Q, Rong Y, Burmeister JW, et al. AAPM task group report 306: quality control and assurance for tomotherapy: an update to task group report 148. Med Phys. 2023;50(3):e25���e52. doi:10.1002/mp.16150
  16. Sterzing F, Uhl M, Hauswald H, et al. Dynamic jaws and dynamic couch in helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010;76(4):1266���1273. doi:10.1016/j.ijrobp.2009.07.1686
  17. Allgower CE, Schreuder AN, Farr JB, Mascia AE. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy. Int J Med Rob Comput Assisted Surg. 2007;3(1):72���81. doi:10.1002/rcs.128
  18. Wu K, Kuhlenkoetter B. Dynamic behavior and path accuracy of an industrial robot with a CNC controller. Adv Mech Eng. 2022;14(2):16878132221082869. doi:10.1177/16878132221082869
  19. Stevenson AW, Crosbie JC, Hall CJ, H��usermann D, Livingstone J, Lye JE. Quantitative characterization of the x���ray beam at the australian synchrotron imaging and medical beamline (IMBL). J Synchrotron Radiat. 2017;24(1):110���141. doi:10.1107/S1600577516015563
  20. Hall C, Hausermann D, Maksimenko A, et al. Detectors for the imaging and medical beam line at the australian synchrotron. J Instrum. 2013;8(06):C06011���C06011. doi:10.1088/1748���0221/8/06/C06011
  21. Cobb TM, Chernousko YS, Uzun IS. ZEBRA: A Flexible Solution for Controlling Scanning Experiments. Proceedings of ICALEPCS2013; 2014; San Francisco, CA.
  22. van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002;52(5):1407���1422. doi:10.1016/S0360���3016(01)02805���X
  23. Fernandez���Palomo C, Trappetti V, Potez M, et al. Complete remission of mouse melanoma after temporally fractionated microbeam radiotherapy. Cancers. 2020;12(9):2656. doi:10.3390/cancers12092656
  24. Adam JF, Balosso J, Bayat S, et al. Toward neuro���oncologic clinical trials of high���dose���rate synchrotron microbeam radiation therapy: first treatment of a spontaneous canine brain tumor. Int J Radiat Oncol Biol Phys. 2022;113(5):967���973. doi:10.1016/j.ijrobp.2022.04.022
  25. Herk vM, Witte M, Geer v. dJ, Schneider C, Lebesque JV. Biologic and physical fractionation effects of random geometric errors. Int J Radiat Oncol Biol Phys. 2003;57(5):1460���1471. doi:10.1016/j.ijrobp.2003.08.026
  26. Gordon JJ, Siebers JV. Convolution method and ctv���to���ptv margins for finite fractions and small systematic errors. Phys Med Biol. 2007;52(7):1967. doi:10.1088/0031���9155/52/7/013
  27. Paino J, Barnes M, Engels E, et al. Incorporating clinical imaging into the delivery of microbeam radiation therapy. Appl Sci. 2021;11(19):9101. doi:10.3390/app11199101
  28. Sengupta C, Nguyen DT, Moodie T, et al. The first clinical implementation of real���time 6 degree���of���freedom image���guided radiotherapy for liver SABR patients. Radiother Oncol. 2024;190:110031. doi:10.1016/j.radonc.2023.110031
  29. Al���Hallaq HA, Cervi��o L, Gutierrez AN, et al. AAPM task group report 302: surface���guided radiotherapy. Med Phys. 2022;49(4):e82���e112. doi:10.1002/mp.15532

Grants

  1. PGRA-MB/Australian Institute of Nuclear Science and Engineering
  2. EPN 20010/ANSTO Australian Synchrotron

Word Cloud

Created with Highcharts 10.0.0treatmentsystemdeliverydynamicradiotherapypatientroboticsynchrotronbeamrobotconformalfieldsIMBLtreatmentscollimatorballbearingpositionmarginsclinicaltargetshapingmotiondevelopednewcircularspeedsverticalremainedconsistentfutureBACKGROUND:remainsstaticsourcedynamicallymanipulatedfixedhorizontallywideverticallysmallrequiringmovedensurefullcoveragefieldconformexistsperformsPURPOSE:testedcapabledeliveringpositioninguseImagingMedicalBeamlineAustralianNuclearScienceTechnologyOrganisationAustralian SynchrotronMETHODS:industrialmanipulatormodifiedenablecombinedcarbon-fibercouch-toprecentlyformedbasissynchronizemotionsreal-timehardware-basedevent-handlingutilizedtestmedicalphysicsphantomtreatedranging540mmdiameter250mm comparedcenterpositionaltemporalaccuracyassessedappropriatedeterminedRESULTS:variedspeedhorizontaltime-delayDatarightedgecapabilitiesanalysistechniquelargervariationstimingHorizontalcalculatedCONCLUSIONS:implementedfirstlargesterrorsobserveddirectionimprovementscanreducedaccuraterepeatablereadysupportfacilitate

Similar Articles

Cited By