An MR-only deep learning inference model-based dose estimation algorithm for MR-guided adaptive radiation therapy.

Zhiqiang Liu, Kuo Men, Weigang Hu, Jianrong Dai, Jiawei Fan
Author Information
  1. Zhiqiang Liu: Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  2. Kuo Men: Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  3. Weigang Hu: Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
  4. Jianrong Dai: Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  5. Jiawei Fan: Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.

Abstract

BACKGROUND: Magnetic resonance-guided adaptive radiation therapy (MRgART) systems combine Magnetic resonance imaging (MRI) technology with linear accelerators (LINAC) to enhance the precision and efficacy of cancer treatment. These systems enable real-time adjustments of treatment plans based on the latest patient anatomy, creating an urgent need for accurate and rapid dose calculation algorithms. Traditional CT-based dose calculations and ray-tracing (RT) processes are time-consuming and may not be feasible for the online adaptive workflow required in MRgART. Recent advancements in deep learning (DL) offer promising solutions to overcome these limitations.
PURPOSE: This study aims to develop a DL-based dose calculation engine for MRgART that relies solely on MR images. This approach addresses the critical need for accurate and rapid dose calculations in the MRgART workflow without relying on CT images or time-consuming RT processes.
METHODS: We used a deep residual network inspired by U-Net to establish a direct connection between distance-corrected conical (DCC) fluence maps and dose distributions in the image domain. The study utilized data from 30 prostate cancer patients treated with fixed-beam Intensity-Modulated Radiation Therapy (IMRT) on an MR-guided LINAC system. We trained, validated, and tested the model using a total of 120 online treatment plans, which encompassed 1080 individual beams. We extensively evaluated the network's performance by comparing its dose calculation accuracy against Monte Carlo (MC)-based methods using metrics such as mean absolute error (MAE) of pixel-wise dose differences, 3D gamma analysis, dose-volume histograms (DVHs), dosimetric indices, and isodose line similarity.
RESULTS: The proposed DL model demonstrated high accuracy in dose calculations. The median MAE of pixel-wise dose differences was 1.2% for the whole body, 1.9% for targets, and 1.1% for organs at risk (OARs). The median 3D gamma passing rates for the 3%/3  mm criterion were 94.8% for the whole body, 95.7% for targets, and 98.7% for OARs. Additionally, the Dice similarity coefficient (DSC) of isodose lines between the DL-based and MC-based dose calculations averaged 0.94 �� 0.01. There were no big differences between the DL-based and MC-based calculations in the DVH curves and clinical dosimetric indices. This proved that the two methods were clinically equivalent.
CONCLUSION: This study presents a novel MR-only dose calculation engine that eliminates the need for CT images and complex RT processes. By leveraging DL, the proposed method significantly enhances the efficiency and accuracy of the MRgART workflow, particularly for prostate cancer treatment. This approach holds potential for broader applications across different cancer types and MR-linac systems, paving the way for more streamlined and precise radiation therapy planning.

Keywords

References

  1. Kl��ter S. Technical design and concept of a 0.35 T MR���Linac. Clin Transl Radiat Oncol. 2019;18:98���101. doi:10.1016/j.ctro.2019.04.007
  2. Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging���linac system. Semin Radiat Oncol. 2014;24(3):207���209. doi:10.1016/j.semradonc.2014.02.009
  3. Lim���Reinders S, Keller BM, Al���Ward S, Sahgal A, Kim A. Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99(4):994���1003. doi:10.1016/j.ijrobp.2017.04.023
  4. Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: the Elekta Unity MR���linac concept. Clin Transl Radiat Oncol. 2019;18:54���59. doi:10.1016/j.ctro.2019.04.001
  5. Bourland JD, Chaney EL. A finite���size pencil beam model for photon dose calculations in three dimensions. Med Phys. 1992;19(6):1401���1412. doi:10.1118/1.596772
  6. Fogliata A, Nicolini G, Vanetti E, Clivio A, Cozzi L. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water. Phys Med Biol. 2006;51(6):1421���1438. doi:10.1088/0031���9155/51/6/004
  7. Ahnesj�� A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577���592. doi:10.1118/1.596360
  8. Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol. 2006;51(13):R287���R301. doi:10.1088/0031���9155/51/13/R17
  9. Hissoiny S, Raaijmakers AJE, Ozell B, Despr��s P, Raaymakers BW. Fast dose calculation in magnetic fields with GPUMCD. Phys Med Biol. 2011;56(16):5119���5129. doi:10.1088/0031���9155/56/16/003
  10. Kontaxis C, Bol GH, Lagendijk JJW, Raaymakers BW. DeepDose: towards a fast dose calculation engine for radiation therapy using deep learning. Phys Med Biol. 2020;65(7):075013. doi:10.1088/1361���6560/ab7630
  11. Xing Y, Nguyen D, Lu W, Yang M, Jiang S. Technical note: a feasibility study on deep learning���based radiotherapy dose calculation. Med Phys. 2020;47(2):753���758. doi:10.1002/mp.13953
  12. Dong P, Xing L. Deep DoseNet: a deep neural network for accurate dosimetric transformation between different spatial resolutions and/or different dose calculation algorithms for precision radiation therapy. Phys Med Biol. 2020;65(3):035010. doi:10.1088/1361���6560/ab652d
  13. Fan J, Xing L, Dong P, Wang J, Hu W, Yang Y. Data���driven dose calculation algorithm based on deep U���Net. Phys Med Biol. 2020;65(24):245035. doi:10.1088/1361���6560/abca05
  14. Zhu J, Liu X, Chen L. A preliminary study of a photon dose calculation algorithm using a convolutional neural network. Phys Med Biol. 2020;65(20):20NT02. doi:10.1088/1361���6560/abb1d7
  15. Tsekas G, Bol GH, Raaymakers BW, DeepDose KontaxisC. A robust deep learning���based dose engine for abdominal tumours in a 1.5 T MRI radiotherapy system. Phys Med Biol. 2021;66(6):065017. doi:10.1088/1361���6560/abe3d1
  16. Neph R, Lyu Q, Huang Y, Yang YM, Sheng K. DeepMC: a deep learning method for efficient Monte Carlo beamlet dose calculation by predictive denoising in magnetic resonance���guided radiotherapy. Phys Med Biol. 2021;66(3):035022. doi:10.1088/1361���6560/abca01
  17. Neishabouri A, Wahl N, Mairani A, K��the U, Bangert M. Long short���term memory networks for proton dose calculation in highly heterogeneous tissues. Med Phys. 2021;48(4):1893���1908. doi:10.1002/mp.14658
  18. Wu C, Nguyen D, Xing Y, et al. Improving proton dose calculation accuracy by using deep learning. Mach Learn Sci Technol. 2021;2(1):015017. doi:10.1088/2632���2153/abb6d5
  19. Xiao F, Cai J, Zhou X, Zhou L, Song T, Li Y. TransDose: a transformer���based UNet model for fast and accurate dose calculation for MR���LINACs. Phys Med Biol. 2022;67(12):10. doi:10.1088/1361���6560/ac7376
  20. Zhang B, Liu X, Chen L, Zhu J. Convolution neural network toward Monte Carlo photon dose calculation in radiation therapy. Med Phys. 2022;49(2):1248���1261. doi:10.1002/mp.15408
  21. Zhang B, Zhuang Y, Li Y, et al. Generalisation of radiotherapy dose calculation for Monte Carlo algorithm combined with 3D Swin���Unet: a multi���institutional IMRT evaluation. Phys Med Biol. 2023;68(21):215015. doi:10.1088/1361���6560/ad02d8
  22. Zhang X, Zhang H, Wang J, et al. Deep learning���based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy. Med Phys. 2023;50(12):7314���7323. doi:10.1002/mp.16719
  23. Fan J, Liu Z, Yang D, et al. A New Dose Calculation System Implemented in Image Domain���A Multi���Institutional Study. arXiv:2312.07830, 2023.
  24. Roberts DA, Sandin C, Vesanen PT, et al. Machine QA for the Elekta Unity system: a report from the Elekta MR���linac consortium. Med Phys. 2021;48(5):e67���e85. doi:10.1002/mp.14764
  25. Liu Z, Fan J, Li M, et al. A deep learning method for prediction of three���dimensional dose distribution of helical tomotherapy. Med Phys. 2019;46(5):1972���1983. doi:10.1002/mp.13490
  26. Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning based on three���dimensional dose distribution predicted from deep learning technique. Med Phys. 2019;46(1):370���381. doi:10.1002/mp.13271
  27. Raaymakers BW, Raaijmakers AJE, Kotte ANTJ, Jette D, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol. 2004;49(17):2963���2974. doi:10.1088/0031���9155/49/17/019

Grants

  1. 23PJD014/Shanghai Pujiang Programme
  2. 2022-I2M-C&T-B-075/Special Research Fund for Central Universities, Peking Union Medical College, CAMS Innovation Fund for Medical Sciences (CIFMS)
  3. 11905295 11975313 11875320 11675042 12375339/National Natural Science Foundation of China
  4. LC2021B01/the Beijing Hope Run Special Fund of Cancer Foundation of China

Word Cloud

Created with Highcharts 10.0.0doseMRgARTcalculationcalculationsadaptiveradiationtherapycancertreatmentdeepsystemsneedRTprocessesworkflowlearningDLstudyDL-basedimagesaccuracydifferences1MagneticLINACplansaccuraterapidtime-consumingonlineengineapproachCTprostateMR-guidedmodelusingmethodsMAEpixel-wise3DgammadosimetricindicesisodosesimilarityproposedmedianwholebodytargetsOARs7%MC-basedMR-onlyBACKGROUND:resonance-guidedcombineresonanceimagingMRItechnologylinearacceleratorsenhanceprecisionefficacyenablereal-timeadjustmentsbasedlatestpatientanatomycreatingurgentalgorithmsTraditionalCT-basedray-tracingmayfeasiblerequiredRecentadvancementsofferpromisingsolutionsovercomelimitationsPURPOSE:aimsdevelopreliessolelyMRaddressescriticalwithoutrelyingMETHODS:usedresidualnetworkinspiredU-Netestablishdirectconnectiondistance-correctedconicalDCCfluencemapsdistributionsimagedomainutilizeddata30patientstreatedfixed-beamIntensity-ModulatedRadiationTherapyIMRTsystemtrainedvalidatedtestedtotal120encompassed1080individualbeamsextensivelyevaluatednetwork'sperformancecomparingMonteCarloMC-basedmetricsmeanabsoluteerroranalysisdose-volumehistogramsDVHslineRESULTS:demonstratedhigh2%9%1%organsriskpassingrates3%/3  mmcriterion948%9598AdditionallyDicecoefficientDSClinesaveraged094 �� 001bigDVHcurvesclinicalprovedtwoclinicallyequivalentCONCLUSION:presentsnoveleliminatescomplexleveragingmethodsignificantlyenhancesefficiencyparticularlyholdspotentialbroaderapplicationsacrossdifferenttypesMR-linacpavingwaystreamlinedpreciseplanninginferencemodel-basedestimationalgorithmMR���guidedMR���only

Similar Articles

Cited By