How to Study the Effects of Dietary Lipids on the Small Intestinal Microbiome? Methodological Design and Evaluation of the Human HealThy fAt, haPpy mIcRobiome (TAPIR) Proof-of-Concept Study.

Lonneke JanssenDuijghuijsen, Karen Fransen, Ruolei Deng, Corine Perenboom, Nicole de Wit, Guido Hooiveld, Mara van Trijp
Author Information
  1. Lonneke JanssenDuijghuijsen: Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands.
  2. Karen Fransen: Division of Human Nutrition and Health, Wageningen University & Research, Wageningen University, Wageningen, the Netherlands.
  3. Ruolei Deng: Division of Human Nutrition and Health, Wageningen University & Research, Wageningen University, Wageningen, the Netherlands.
  4. Corine Perenboom: Division of Human Nutrition and Health, Wageningen University & Research, Wageningen University, Wageningen, the Netherlands.
  5. Nicole de Wit: Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands.
  6. Guido Hooiveld: Division of Human Nutrition and Health, Wageningen University & Research, Wageningen University, Wageningen, the Netherlands.
  7. Mara van Trijp: Division of Human Nutrition and Health, Wageningen University & Research, Wageningen University, Wageningen, the Netherlands.

Abstract

Background: Emerging evidence highlights the importance of the small intestinal microbiota in digestion and metabolism, underscoring the challenging need for human studies beyond fecal analyses.
Objective: The TAPIR (acronym of "healthy fat, happy microbiome") proof-of-concept study was primarily designed to confirm the interaction between the small intestinal microbiota and dietary lipids in healthy adults with a challenge test. We also aimed to assess the impact of a plant-based mild-ketogenic preconditioning diet on microbiome composition and function. Here, we comprehensively describe our extensive study protocol and evaluate the study execution.
Methods: Participants consumed an 8-day preconditioning diet, followed by a high-fat shake challenge test on day 9. During this test, fasting and postprandial small intestinal aspirates were collected every 20 min via a naso-intestinal catheter, and blood samples were collected hourly. Participants ingested small intestine aspiration capsules before (day 0), on day 6 of the preconditioning diet, and during the challenge test. Dietary compliance, capsule retrieval, sample collection, stool pattern, and gastrointestinal complaints were monitored to evaluate study execution.
Results: Twenty adults with a mean age of 48 y (19-88 y) and a mean body mass index (BMI) of 24.3 kg/m (19.5-30 kg/m) consumed a preconditioning diet with a 96% compliance. There were no significant changes in gastrointestinal complaints and stool patterns during the study. Mean aspiration capsule retrieval rate was 94.7%, with mean sample weights per timepoint between 84.2 and 95.4 mg and median transit times between 32.8 and 49.3 h. The average success rate of aspirate collection by catheter was 49%, varying significantly between time points.
Conclusion: The dietary intervention was successful and well-tolerated. We sampled in the small intestine with capsules and catheters, each with its own (dis)advantages. The comprehensive description and evaluation of our study execution offer practical insights supporting future study designs in food-microbe interactions in the small intestine.The trial is registered at clinicaltrials.gov as NCT06064266.

Keywords

Associated Data

ClinicalTrials.gov | NCT06064266

References

  1. Nature. 2023 May;617(7961):581-591 [PMID: 37165188]
  2. Microbiologyopen. 2021 Jun;10(3):e1194 [PMID: 34180599]
  3. Curr Atheroscler Rep. 2008 Dec;10(6):467-72 [PMID: 18937893]
  4. Am J Physiol Regul Integr Comp Physiol. 2002 Feb;282(2):R366-71 [PMID: 11792645]
  5. Am J Clin Nutr. 1993 Oct;58(4):489-96 [PMID: 8379504]
  6. PLoS One. 2015 Sep 10;10(9):e0137784 [PMID: 26356733]
  7. Clinics (Sao Paulo). 2007 Feb;62(1):47-54 [PMID: 17334549]
  8. Cell Host Microbe. 2023 Feb 8;31(2):173-186 [PMID: 36758518]
  9. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17808-13 [PMID: 24127592]
  10. Gut. 1991 May;32(5):483-6 [PMID: 2040469]
  11. Gut. 2023 Dec 7;73(1):186-202 [PMID: 37734912]
  12. Dig Dis Sci. 2019 Nov;64(11):3240-3246 [PMID: 31076988]
  13. Microbiome. 2023 Feb 11;11(1):26 [PMID: 36774515]
  14. Cell Host Microbe. 2018 Apr 11;23(4):458-469.e5 [PMID: 29649441]
  15. J Appl Microbiol. 2003;94(1):138-45 [PMID: 12492934]
  16. Cell Mol Gastroenterol Hepatol. 2020;9(1):33-45 [PMID: 31344510]
  17. Eur J Clin Nutr. 2011 Feb;65(2):240-6 [PMID: 20978528]
  18. Curr Opin Biotechnol. 2015 Apr;32:14-20 [PMID: 25308830]
  19. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  20. Nat Rev Gastroenterol Hepatol. 2021 Feb;18(2):101-116 [PMID: 33208922]
  21. Nat Commun. 2019 Sep 5;10(1):4007 [PMID: 31488836]
  22. Endoscopy. 2018 Apr;50(4):423-446 [PMID: 29539652]
  23. Trends Microbiol. 2024 Oct;32(10):970-983 [PMID: 38503579]
  24. Dig Dis Sci. 2018 Sep;63(9):2244-2250 [PMID: 29767393]
  25. Benef Microbes. 2020 Mar 27;11(2):101-129 [PMID: 32073295]
  26. iScience. 2024 Feb 10;27(3):109208 [PMID: 38420581]
  27. Am J Clin Nutr. 2021 Sep 1;114(3):843-861 [PMID: 34036315]
  28. Br J Nutr. 2011 Jul;106(2):274-81 [PMID: 21338536]
  29. Anim Microbiome. 2023 Dec 16;5(1):64 [PMID: 38104116]
  30. Gut Microbes. 2024 Jan-Dec;16(1):2350173 [PMID: 38738780]
  31. Int J Mol Sci. 2022 Apr 07;23(8): [PMID: 35456888]
  32. Nutrients. 2018 Feb 28;10(3): [PMID: 29495569]
  33. Am J Gastroenterol. 2013 May;108(5):737-47 [PMID: 23567355]

Word Cloud

Created with Highcharts 10.0.0smallstudydietintestinaltestpreconditioningintestinemicrobiotachallengeexecutiondaycatheteraspirationcapsulemeanhumanTAPIRproof-of-conceptdietarylipidsadultsplant-basedmild-ketogenicevaluateParticipantsconsumedcollectedcapsulesDietarycomplianceretrievalsamplecollectionstoolgastrointestinalcomplaintsy3kg/mrateStudyBackground:EmergingevidencehighlightsimportancedigestionmetabolismunderscoringchallengingneedstudiesbeyondfecalanalysesObjective:acronym"healthyfathappymicrobiome"primarilydesignedconfirminteractionhealthyalsoaimedassessimpactmicrobiomecompositionfunctioncomprehensivelydescribeextensiveprotocolMethods:8-dayfollowedhigh-fatshake9fastingpostprandialaspiratesevery20minvianaso-intestinalbloodsampleshourlyingested06patternmonitoredResults:Twentyage4819-88bodymassindexBMI24195-3096%significantchangespatternsMean947%weightspertimepoint842954mgmediantransittimes32849haveragesuccessaspirate49%varyingsignificantlytimepointsConclusion:interventionsuccessfulwell-toleratedsampledcathetersdisadvantagescomprehensivedescriptionevaluationofferpracticalinsightssupportingfuturedesignsfood-microbeinteractionsThetrialregisteredclinicaltrialsgovNCT06064266EffectsLipidsSmallIntestinalMicrobiome?MethodologicalDesignEvaluationHumanHealThyfAthaPpymIcRobiomeProof-of-Conceptlipidomicsmetabolites

Similar Articles

Cited By