LEF1 influences diabetic retinopathy and retinal pigment epithelial cell ferroptosis the axis through .

Yi-Yi Luo, Xue-Ying Ba, Ling Wang, Ye-Pin Zhang, Hong Xu, Pei-Qi Chen, Li-Bo Zhang, Jian Han, Heng Luo
Author Information
  1. Yi-Yi Luo: Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  2. Xue-Ying Ba: Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  3. Ling Wang: Department of Endocrinology, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  4. Ye-Pin Zhang: Department of Pathology, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  5. Hong Xu: Department of Ophthalmology, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  6. Pei-Qi Chen: Department of Endocrinology, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  7. Li-Bo Zhang: Department of Ophthalmology, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  8. Jian Han: Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.
  9. Heng Luo: Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People's Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of DaLi University, Chuxiong 675000, Yunnan Province, China.

Abstract

BACKGROUND: Diabetic retinopathy (DR) is one of the major eye diseases contributing to blindness worldwide. Endoplasmic reticulum (ER) stress in retinal cells is a key factor leading to retinal inflammation and vascular leakage in DR, but its mechanism is still unclear.
AIM: To investigate the potential mechanism of LEF1 and related RNAs in DR.
METHODS: ARPE-19 cells were exposed to high levels of glucose for 24 hours to simulate a diabetic environment. Intraperitoneally injected streptozotocin was used to induce the rat model of DR. The expression levels of genes and related proteins were measured by RT-qPCR and Western blotting; and were detected by fluorescent hybridization; CCK-8 and TUNEL assays were used to detect cell viability and apoptosis; enzyme-linked immunosorbent assay was used to detect inflammatory factors; dual-luciferase gene assays were used to verify the targeting relationship; and the retina was observed by HE staining.
RESULTS: LEF1 and have binding sites, and can regulate the / molecular axis. In high glucose-treated cells, inflammation was aggravated, the intracellular reactive oxygen species concentration was increased, cell viability was reduced, apoptosis was increased, the ER response was intensified, and ferroptosis was increased. As an ER molecular chaperone, GRP78 regulates the ER and ferroptosis under the targeting of , whereas inhibiting can further downregulate the expression of , increase the level of , and sequentially regulate the level of GRP78 to alleviate the occurrence and development of DR. Animal experiments indicated that the knockdown of LEF1 can affect the // signaling axis to restrain the progression of DR.
CONCLUSION: knockdown can regulate the / molecular axis through , which affects ER stress and restrains the progression of DR and ferroptosis in retinal pigment epithelial cells.

Keywords

References

  1. EMBO Mol Med. 2018 Mar;10(3): [PMID: 29335338]
  2. Diabetologia. 2019 Mar;62(3):517-530 [PMID: 30612136]
  3. J Pharmacol Sci. 2022 Sep;150(1):31-40 [PMID: 35926946]
  4. Comput Math Methods Med. 2022 Jul 11;2022:2439509 [PMID: 35860182]
  5. Cell Death Dis. 2020 Jan 6;11(1):16 [PMID: 31907362]
  6. Nat Rev Endocrinol. 2021 Apr;17(4):195-206 [PMID: 33469209]
  7. Cell Death Dis. 2020 Jul 30;11(7):598 [PMID: 32732957]
  8. Cells. 2020 Apr 10;9(4): [PMID: 32290105]
  9. Cell Death Dis. 2020 Feb 3;11(2):86 [PMID: 32015337]
  10. Nat Rev Endocrinol. 2021 Aug;17(8):455-467 [PMID: 34163039]
  11. Cell Death Discov. 2021 Sep 18;7(1):253 [PMID: 34537818]
  12. Inflammation. 2021 Aug;44(4):1464-1477 [PMID: 33830389]
  13. Am J Physiol Endocrinol Metab. 2021 Mar 1;320(3):E598-E608 [PMID: 33284093]
  14. J Cell Mol Med. 2022 Apr;26(7):2076-2088 [PMID: 35152537]
  15. Ageing Res Rev. 2021 Sep;70:101417 [PMID: 34339860]
  16. Eye Vis (Lond). 2022 Jun 7;9(1):20 [PMID: 35668539]
  17. Curr Mol Pharmacol. 2023;16(2):188-196 [PMID: 35049444]
  18. Cell Mol Life Sci. 2019 Feb;76(3):441-451 [PMID: 30374521]
  19. World J Surg Oncol. 2022 Apr 30;20(1):138 [PMID: 35490244]
  20. Cancer Lett. 2022 Oct 28;547:215880 [PMID: 35981569]
  21. Ann Clin Biochem. 2019 Mar;56(2):253-258 [PMID: 30514096]
  22. J Immunol Res. 2023 Mar 24;2023:8929525 [PMID: 37008632]
  23. Mol Med Rep. 2019 Aug;20(2):1418-1428 [PMID: 31173238]
  24. Exp Eye Res. 2019 Apr;181:316-324 [PMID: 30171859]
  25. Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1617-1626 [PMID: 30922813]
  26. Int J Clin Exp Pathol. 2019 Apr 01;12(4):1324-1332 [PMID: 31933946]
  27. Int J Mol Sci. 2021 Nov 24;22(23): [PMID: 34884485]
  28. Cancer Sci. 2022 Dec;113(12):4374-4384 [PMID: 36082704]
  29. Biol Pharm Bull. 2021 Jun 1;44(6):861-868 [PMID: 33828027]
  30. Int J Mol Sci. 2022 Sep 06;23(18): [PMID: 36142139]
  31. Cell Tissue Res. 2020 Dec;382(3):477-486 [PMID: 32783101]
  32. Thorac Cancer. 2022 Jul;13(13):1916-1924 [PMID: 35608059]
  33. Nat Commun. 2016 Sep 30;7:12864 [PMID: 27686049]
  34. Biochim Biophys Acta. 2012 Aug;1826(1):13-22 [PMID: 22426159]
  35. Regen Ther. 2022 May 18;21:1-8 [PMID: 35619945]
  36. Nat Rev Cardiol. 2021 Jul;18(7):499-521 [PMID: 33619348]
  37. J Mol Cell Cardiol. 2020 Jun;143:132-144 [PMID: 32339566]
  38. Pharm Biol. 2022 Dec;60(1):491-500 [PMID: 35188833]
  39. Br J Biomed Sci. 2022 Jan 21;79:10192 [PMID: 35996507]
  40. Sci Rep. 2022 Sep 28;12(1):16156 [PMID: 36171250]
  41. Int J Biol Sci. 2021 Jun 26;17(11):2703-2717 [PMID: 34345202]
  42. Oxid Med Cell Longev. 2022 Aug 31;2022:9004738 [PMID: 36092160]
  43. Foods. 2022 Oct 04;11(19): [PMID: 36230152]
  44. Mol Biomed. 2022 Aug 10;3(1):25 [PMID: 35945406]
  45. Fish Shellfish Immunol. 2022 Aug;127:99-108 [PMID: 35709895]
  46. PLoS One. 2022 Oct 13;17(10):e0275598 [PMID: 36227864]
  47. Redox Rep. 2022 Dec;27(1):70-78 [PMID: 35285425]
  48. Biosci Rep. 2021 Dec 22;41(12): [PMID: 34806748]
  49. Mol Ther Oncolytics. 2022 Sep 17;27:26-47 [PMID: 36247810]
  50. Nat Rev Cancer. 2021 Feb;21(2):71-88 [PMID: 33214692]
  51. Sci Rep. 2021 Feb 18;11(1):4136 [PMID: 33602976]
  52. Exp Eye Res. 2022 Aug;221:109142 [PMID: 35691375]
  53. Elife. 2022 Feb 09;11: [PMID: 35138251]
  54. Biochem Biophys Res Commun. 2020 Jun 18;527(1):289-296 [PMID: 32446382]
  55. Cells. 2022 Sep 09;11(18): [PMID: 36139394]
  56. Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):898-914 [PMID: 33297752]
  57. Oxid Med Cell Longev. 2022 Oct 10;2022:5992436 [PMID: 36262286]

Word Cloud

Created with Highcharts 10.0.0DRERcellsretinalLEF1usedcanaxisferroptosisretinopathystresscellregulatemolecularincreasedpigmentDiabeticEndoplasmicreticuluminflammationmechanismrelatedhighlevelsdiabeticexpressionassaysdetectviabilityapoptosistargeting/GRP78levelknockdownprogressionepithelialBACKGROUND:onemajoreyediseasescontributingblindnessworldwidekeyfactorleadingvascularleakagestillunclearAIM:investigatepotentialRNAsMETHODS:ARPE-19exposedglucose24hourssimulateenvironmentIntraperitoneallyinjectedstreptozotocininduceratmodelgenesproteinsmeasuredRT-qPCRWesternblottingdetectedfluorescenthybridizationCCK-8TUNELenzyme-linkedimmunosorbentassayinflammatoryfactorsdual-luciferasegeneverifyrelationshipretinaobservedHEstainingRESULTS:bindingsitesglucose-treatedaggravatedintracellularreactiveoxygenspeciesconcentrationreducedresponseintensifiedchaperoneregulateswhereasinhibitingdownregulateincreasesequentiallyalleviateoccurrencedevelopmentAnimalexperimentsindicatedaffect//signalingrestrainCONCLUSION:affectsrestrainsinfluencesFerroptosisLnc-MGCRetinalepitheliummiR-495-3p/GRP78

Similar Articles

Cited By